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ABSTRACT: Markerless motion capture systems have gained increasing interest as practical alternatives to
gold-standard references systems in clinical and sports contexts. This systematic review and three-level meta-
analysis aimed to evaluate the criterion validity of OpenCap and to systematically summarize the available
evidence regarding its reliability. A literature search was conducted across Web of Science, PubMed, Scopus,
and EBSCO. Among the 12 studies included in the systematic review, 11 provided sufficient data for the meta-
analytic synthesis of criterion validity, encompassing 184 participants, from which 640 effect sizes (ES), 230 Fisher’s
Z values, and 1087 root mean square error (RMSE) values were obtained. OpenCap demonstrated a statistically
significant, yet practically trivial effect compared to criterion devices (ES = -0.140; p = 0.021). Fisher's
Z transformation indicated a good-to-excellent correlation with criterion devices (r = 0.845; p = 0.005). The
pooled RMSE was 5.877°, which decreased to 5.197° after sensitivity analysis and further to 4.940° following
trim-and-fill adjustment. In terms of reliability, test-retest consistency generally ranged from moderate to very
good across many joint angles and tasks, although marked variability was observed in certain task-joint
combinations, particularly in high-velocity movements and complex joint actions. OpenCap, as a smartphone-
based markerless motion capture system, can provide valid and acceptable kinematic measurements when
compared to criterion devices. However, its performance varies depending on task complexity and joint-specific
demands, underscoring the need for evaluation across diverse populations, a wider range of task types, and
within standardized methodological frameworks.
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Motion capture systems are widely used in clinical and sports contexts
for various purposes, such as analysing movement techniques, im-
proving skill training (e.g., through real-time feedback for movement
retraining), and monitoring rehabilitation or training processes [1, 2].
Additionally, motion analysis is often a key component of screening
tests to identify athletes at risk of lower extremity injuries, enabling
the development of personalized training programmes [3-7]. Three-
dimensional (3D) marker-based motion capture systems are consid-
ered the gold standard in sports science for kinematic measurements
of the whole body and joint levels. However, their effectiveness is
influenced by extensive setup requirements, such as marker place-
ment on participants, the need for specialized clothing, camera
calibration, and the expertise training required to conduct data

collection processes [8]. In addition, high costs and the need for
complex laboratory setups further complicate their applicability;
limitations in portability also restrict their areas of use [2, 9-12].
These challenges in using marker-based systems encourage many
clinicians working in sports medicine and biomechanics to explore
alternative methods with high ecological validity to obtain the same
kinematic data [13, 141. Furthermore, the time factor is one of the
most significant limitations of marker-based systems, prompting
researchers to seek alternative methods for athlete and patient as-
sessments [1]. In contrast, artificial intelligence (Al) supported mark-
erless motion capture systems stand out with their ability to estimate
3D poses from two-dimensional (2D) red-green-blue (RGB) video
cameras, offering the potential to overcome many limitations of
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traditional laboratory-based assessments [15]. These 2D pose esti-
mation algorithms can detect anatomical landmarks or joint centre
positions in a single video and derive an individual’s posture in each
video frame or image [16]. Over the past decade, various 2D pose
estimation algorithms, such as OpenPose, Theia3D, DeeplLabCut,
DeepPose, and DeeperCut, have been published [17-21]. The abil-
ity to quickly collect data from numerous individuals makes marker-
less motion capture systems a promising alternative for large-scale
real-world applications. The increasing widespread use and develop-
ment of these systems demonstrate that a detailed understanding of
their measurement properties is of critical importance for effective
use. These properties, such as the capacity of systems to obtain
measurement results that are close to true values and to acceptably
and validly assess the structures they aim to measure (agreement/
accuracy), as well as their ability to generate consistent measure-
ments (reliability) [1, 2, 221, are of critical importance for effective
and dependable use in clinical settings. The knowledge gained about
the system’s measurement properties can enable clinicians to make
informed decisions when selecting equipment for their own prac-
tices. In addition, the ability of computer vision and artificial intel-
ligence models to precisely track different body positions and speeds
may vary depending on the tasks [23]. This situation stands out as
a factor that can significantly affect the validity and reliability levels
of markerless motion capture systems [24]. The fact that the valid-
ity and reliability levels of these systems in analysing dynamic tasks
commonly used in sports and clinical settings have not yet been
fully clarified creates uncertainty regarding the widespread adoption
and effective use of this technology.

OpenCap (Stanford, USA) is an open-source, web-based, and mark-
erless motion capture system [25]. Using two iOS devices and a lap-
top, this system processes kinematic data through cloud-based soft-
ware and outputs the result. Compared to traditional marker-based
laboratory systems, OpenCap is low-cost, easy to set up, and requires
minimal maintenance, making it convenient for use in non-laborato-
ry environments. By eliminating the need to place markers on the
body, it enables the analysis of natural movements in sport-specific
settings, making the system a promising tool for both clinical and
sports applications [26]. In a pioneering study in this field, Uhlrich
et al. introduced the OpenCap system and took the first steps of val-
idation by comparing kinematic data obtained using two iPhones with
the marker-based system, which is the reference standard in the in-
dustry. When the two systems were compared during various activi-
ties such as walking, squatting, standing up from a chair, and drop
jumps (DJs) in ten healthy individuals, the RMSE range across low-
er-extremity joint angles was found to be 2.0-10.2° [25].

The accessibility offered by OpenCap through its low-cost, porta-
ble, and markerless structure holds significant potential in various
fields such as clinical applications, sports science, and academic re-
search. This system is noteworthy for enabling movement analysis
in natural environments by largely eliminating the time, cost, and
setup challenges of traditional marker-based systems [27-301.
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However, alongside these advantages, OpenCap also presents sev-
eral practical limitations that may constrain its wider adoption. The
system currently requires relatively high/new generation quality iOS
devices (iPhone/iPad), which may limit accessibility in some settings.
Its reliance on cloud-based processing makes stable and high-speed
internet a prerequisite, potentially reducing usability in field environ-
ments with limited connectivity. Additionally, the transmission of
movement data to cloud servers raises concerns regarding data pri-
vacy and security (encryption and Stanford compliance measures
have been implemented), particularly in clinical applications subject
to strict regulatory frameworks. Finally, the available data export for-
mats may restrict seamless integration with other biomechanical
analysis software, necessitating additional conversion steps [23, 25].
These practical challenges highlight the importance of critically eval-
uating OpenCap not only in terms of its potential benefits but also
its current limitations when considering broader implementation. The
reliable use of this technology in practical applications is directly re-
lated to the validity and reliability of its kinematic measurement out-
puts. Although recent literature includes studies investigating the va-
lidity of the OpenCap system across different types of movements
and usage scenarios, the findings are not yet sufficiently clear or gen-
eralizable due to methodological diversity and limited sample sizes.
This increases uncertainty for health professionals, sports scientists,
and researchers when evaluating the suitability of the system. Valid
and reliable movement analysis has a critical importance in clinical
decision-making processes. It ensures the individualized and precise
planning of rehabilitation protocols and the informed making of re-
turn-to-sport decisions, thereby optimizing sports performance out-
comes and increasing the effectiveness of rehabilitation interven-
tions [27-301. Therefore, a study that examines the criterion validity
levels of kinematic measurements obtained with the OpenCap sys-
tem and systematically summarizes the available evidence on its re-
liability would fill an important gap in the field. In this context, the
aim of this research is to evaluate the criterion validity of the Open-
Cap markerless motion capture system and to present its reliability
characteristics systematically.

MATERIALS AND METHODS
The protocol was registered on the Open Science Framework (OSF)
platform, and all files regarding the study process were shared (https://
osf.io/qwmsp; Registration DOI: https://doi.org/10.17605/0SF.I0/
KDT38). This systematic review was performed in accordance with
the guidelines outlined in the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA).

Literature search strategy

In this study, four electronic databases (Web of Science, PubMed,
Scopus, and EBSCO) were used for the literature search. Google
Scholar was also used in the follow-up search to identify additional
studies that were not contained in the above databases. The literature
search was initiated on November 24, 2024, and concluded on
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Measurement Properties of the OpenCap

TABLE 1. Inclusion and exclusion criteria.

Inclusion Criteria

Exclusion Criteria

Population

Studies involving human participants using OpenCap
for motion analysis across various movement tasks
(e.g., CMJ, SJ, running, gait analysis).

Studies that do not include human participants or
use OpenCap for purposes unrelated to motion
analysis.

Intervention

Studies assessing the validity and reliability of
OpenCap compared to criterion devices across
different movement tasks and various joint angles.

Studies that do not include a direct comparison
between OpenCap and a recognized gold-standard
motion capture system, or studies that only report
OpenCap’s measurements without validation against
a reference device.

Comparator

Studies that include a comparator group using
criterion devices (three-dimensional motion capture
system, force plate, and optoelectronic system).

Studies without an appropriate comparator group
(studies without a benchmark reference system).

Outcome

Studies reporting Pearson correlation (r), ICC values,
RMSE, or the mean and standard deviation values
of both the criterion device(s) and OpenCap in different
movement modalities and joint angles.

Studies that do not include statistical measures related
to the criterion validity or reliability of OpenCap.

Study Design

Studies exclusively assessing validity and reliability

Randomized controlled trials (RCTs), intervention-

of OpenCap

based studies, longitudinal studies, and cross-
sectional studies.

Additional Criteria Full-text original pre-print articles

Review articles, case studies, conference abstracts,
conference papers, and M.Sc. or Ph.D. theses.

March 7, 2025. The search term used was “OpenCap” AND (“Valid-
ity” OR “Reliability” OR “Accuracy” OR “Agreement”). Additionally,
the reference lists of the included studies were examined for other
relevant studies. Two independent authors (S.G. and S.U.) screened
the titles and abstracts, and articles with the potential for inclusion
in the study were read in full for further evaluation.

Inclusion and exclusion criteria

The study selection was conducted based on the Participants, Inter-
vention, Comparators, Outcomes, and Study Design (PICOS) ap-
proach [31]. Articles published in different languages did not meet
the eligibility criteria; only articles written in English were included
in this study. The details of the inclusion and exclusion criteria for
the study are provided in Table 1.

Data extraction

The extracted data included the (a) authors, (b) year of publication,
(c) sample size, (d) sample characteristics (age, body mass, and
height), (e) study design, (f) OpenCap and criterion devices and their
specifications (sampling frequency in Hz, number of cameras, and
specifications of commercial smartphones used etc.), (g) activity
pattern [jump-based or motion-based, limbs (left or right), and vari-
ous joint angles and movement units, etc.], (h) mean and standard
deviation for both OpenCap and the criterion device, (i) validity

outcomes [Pearson correlation coefficient (r/p), intraclass correlation
coefficient (ICC), means and standard deviations for RMSE, and mean
absolute error (MAE)], and (j) reliability outcomes [r, ICC, standard
error of measurement (SEM), and minimal detectable change (MDC)].
Two authors (S.C. and S.U.) independently extracted data from the
selected articles using a pre-defined form created in Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA). In cases where dis-
crepancies arose regarding the extracted data, they were resolved
through consensus in consultation with a third author (i.1.).

Methodological quality and risk of bias

The methodological quality of each included study was assessed
using a modified Downs and Black assessment [32]. This assessment
was based on five key domains: (1) reporting, (2) external validity,
(3) internal validity-bias, (4) internal validity-confounding, and (5)
statistical power. Items were evaluated using a binary scoring system
of one (1) or zero (0): A score of one (1) indicated that the criteria
were met, whereas a score of zero (0) denoted that the criteria were
not met or could not be determined [33, 34]. In accordance with
recommendations in the literature, specific threshold values were
established for the assessment of study quality. Accordingly, studies
scoring > 50% were classified as “fair quality”, those scoring > 70%
as “good quality”, and those scoring > 90% as “excellent quality”.
Conversely, studies with scores below 50% were categorized as “poor
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quality” [35]. A total of 14 domains were identified to evaluate the

quality of reporting for studies included in this review:

1. Was the hypothesis or study aim clearly described?

2. Were the main outcomes to be measured clearly described in
the Introduction or Methods section?

3. Were the participant characteristics (e.g., age, sex, anthropo-
metrics) clearly detailed?

4. Was the intervention procedure thoroughly described?

5. Were the main findings of the study clearly described?

6. Did the study provide estimates of the random variability in the
data for the main outcomes?

7. Were the subjects asked to participate in the study representa-
tive of the entire population from which they were recruited?

8. Were the statistical tests used to assess the main outcomes
appropriate?

9. Was compliance with the measurement protocol consistent and
reliable across all participants?

10. Were the main outcome measures used accurate (valid and
reliable)?

11.Were any of the results a result of p-hacking/data-dredging?

12.Was there adequate adjustment for confounding in the analyses
from which the main findings were drawn?

13. Were losses of patients to follow-up taken into account?

14.Did the study have sufficient power to show reliability and/or va-
lidity? Was there a power calculation?

Two authors (S.G. and S.U.) independently assessed the meth-
odological quality of the studies included in this systematic review

TABLE 2. Quality assessment scoring of 12 included studies.
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and three-level meta-analysis. In the case of a disagreement between
the two authors (S.G. and S.U.), the third author (i.i.) made the fi-
nal decision. If the third author was unable to reach a definitive con-
clusion, the fourth author (S.0.) conducted the final evaluation and
determined the ultimate decision. Additionally, inter-rater agreement
between the two assessors was calculated using Cohen’s kappa co-
efficient, with a 95% confidence interval (95% Cl) [36]. Cohen’s
kappa coefficient was categorized as follows: values below 0.40 in-
dicated poor agreement, those ranging from 0.40 to 0.75 were con-
sidered fair to good agreement, and values above 0.75 represented
excellent agreement [37]. Beyond evaluating methodological quali-
ty, the researchers also conducted a risk of bias assessment. The
ROBINS-I assessment tool was used to evaluate the risk of bias in
non-randomized studies. The criteria established by the researchers
were adopted as the evaluation criteria [38].

Statistical analysis

The criterion validity of OpenCap in comparison to criterion devices
were assessed across multiple movement modalities [e.g., counter-
movement jump (CMJ), squat jump (SJ), running, and gait analysis]
and various joint angle regions (e.g., hip, knee, and ankle). The tra-
ditional meta-analysis approach assumes that the observed effect
sizes (ESs) should be independent of each other [39]; however, this
is not the case in this study. Therefore, when non-independent ESs
are present, meaning that nested ESs exist within a study, a three-
level meta-analysis method was applied to account for this depen-
dency [40]. The three-level meta-analysis models the variance arising
from sample sizes (Level 1), the variance of different ESs within the

. External Internal Validity
Reporting . - - wer .
Author(s), Year Validity Bias Confounding Total %  Quality
01 Q02 Q@ 04 05 @ Q7 08 Q9 010 Q11 012 Q13 Q14

Verheul et al., 2024 [26] 1 1 1 1 1 1 0 1 1 1 1 0 1 0 11/14 7857% GQ
Turner et al., 2024 [27] 1 1 1 1 1 1 0 1 1 1 1 0 1 0 11/14 7857% GQ
Peng et al., 2024 [57] 1 1 1 1 1 1 0 1 1 1 1 0 0 0 10/14 7143% GQ
Lima et al., 2024 (2] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 13/14 9286% EQ
Uhlrich et al., 2023 [25] 1 1 1 1 1 0 0 1 1 1 1 0 0 0 914 6429% FQ
Kakavand et al., 2025 [58] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 10/14 7143% GQ
Martis et al., 2024 [11] 1 1 1 1 1 1 0 1 1 1 0 1 0 1 11/14 7857% GQ
Schwartz et al., 2024 [60] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 8/14  57.14% FQ
Horsak et al., 2023 [16] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 12/14 8571% GQ
Horsak et al., 2024a [23] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1214 8.71% GQ
Horsak et al., 2024b [56] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1214 8.71% GQ
Svetek et al., 2025 [59] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1214 8.71% GQ

Note: FQ: Fair quality; GQ: Good quality; EQ: Excellent quality.

098 .




Measurement Properties of the OpenCap

same study (Level 2), and the variance of ESs across studies (Level
3) [41]. The three-level meta-analysis was conducted using a random-
effects model with restricted maximum likelihood (REML) estimation
to minimize the Type | error rate. The criterion validity of the OpenCap
was assessed through two complementary approaches: (1) determi-
nation of agreement/accuracy with criterion devices via RMSE and
(2) evaluating correlation with criterion devices using Fisher's Z-
transformed correlation coefficients. In addition to these, Hedges’
g ESs were calculated. The negative or positive nature of ES values
indicates the direction and significance of measurement differences
between OpenCap and criterion devices. Specifically, a negative or
positive ES reflects the direction of systematic bias (underestimation
or overestimation) in OpenCap’s measurements compared to criterion
devices, as well as the magnitude of this bias. ES was interpreted
according to the following reference ranges: trivial (< 0.20), small

(0.20-0.59), moderate (0.60-1.19), large (1.20-1.99), or very large
(>2.00) [42-45]. Given the need to classify reported r values, a sin-
gle study could contribute to multiple independent data pools depend-
ing on the reported statistical outcomes and measured parameters for
validity. The weighting of individual point estimates was based on
sample size. In this context, point estimates were variance-stabilized
using Fisher's Z-transformation [46].

_ , 1+r
Fisher'sZ, = 0.5 X In 1 (1)
_ ! (2)
A a—

SE; = /v, @)

e?2 —1
= — (4)

Summary r 71

)
Articles identified by database screening (n= 184)

=

._g * Web of Science (n= 24)

8 e PubMed (n= 25)

% * Scopus (n=24)

E e EBSCO (n= 106)

= Additional records identified through other (n=5)
—
—

A

» | Duplicates removed (n= 130)

Records after duplicates removed (n= 54)

v

Records excluded by abstract (n= 18)

Y

Screening

Articles screened by full text (n=36)

Reports excluded (n= 24):

A 4

1. Research design did not include the criterion-
related validity or reliability results (n=5)

Studies included in systematic review (n=12)

g

Studies not using OpenCap (n=9)
3. Studies that do not include
participants (n= 2)

human

T

4. Thesis and conference abstracts (n=5)
5. Review articles (n=3)

Studies included in meta-analytic synthesis (n=11)

Included

e

FIG. 1. PRISMA flow diagram.
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Bias due to confounding

Bias due to selection of participants

Bias in classification of interventions

Bias due to deviations from intended interventions
Bias due to missing data

Bias in measurement of outcomes

Bias in selection of the reported result

Overall risk of bias

0%

FIG. 2. Risk of bias in studies.

Here, represents the sample size, denotes the standard error, and
indicates the summary Fisher's Z value [47]. The data were back-
transformed into r values for reporting purposes. The r values were
interpreted as follows: no relationship (< 0.250), weak relationship
(0.250-0.500), moderate to good relationship (0.500-0.750), or
good to excellent relationship (> 0.750) [48].

RMSE represents the magnitude of systematic and random errors
between systems while providing a straightforward and interpreta-
ble measure of prediction accuracy [14, 16, 18, 23, 49]. In this
context, RMSE has been analysed as one of the primary metrics for
evaluating the measurement validity between OpenCap and the cri-
terion devices [50, 51]1. RMSE values are expressed in degrees (°).

The 12 percentages (i.e., the proportion of total variance distribut-
ed across each level) were used to assess the heterogeneity of the
pooled ES. The |2 statistic was interpreted based on the following ref-
erence values: low heterogeneity (< 25%), moderate heterogeneity
(26-75%), and high heterogeneity (> 75%) [52]. The risk of publi-
cation bias was assessed by examining the symmetry of the funnel
plot, and potential asymmetries were confirmed using the extended
Egger's test [53]. Egger's test is based on a regression analysis in
which standardized ESs are regressed against a measure represent-
ing precision, such as the standard error of the correlation coefficients.
A statistically significant regression coefficient in Egger’s test indicates
a relationship between ESs and sampling variance, which suggests
the presence of publication bias. When evidence of publication bias
was detected, Duval and Tweedie’s “trim and fill” procedure was ap-
plied to determine whether adjustments to the estimates were nec-
essary due to the presence of missing studies [54].

The meta-analysis results were interpreted using the fit metrics.
The significance level was set at p < 0.05. Subgroups were meticu-
lously established to thoroughly investigate the nuances of various
factors influencing the outcomes. These subgroups were categorized
based on two key parameters: jumping-based and motion-based tasks.

060 .

259% 50% 75% 100%

. Low risk D Moderate risk . Serious risk

Statistical results not included in the meta-analytic synthesis were
systematically reported to support interpretation. To assess the ro-
bustness of the results, sensitivity analyses were conducted by remov-
ing one study at a time [46, 55]. Statistical analyses were conduct-
ed using the “metafor” package in R (v 4.2.1; R Core Team, https:/
www.r-project.org/). Forest plot graphs were generated using Graph-
Pad Prism version 10 (GraphPad Software, San Diego, CA, USA).

RES U LTS 150
Characteristics of the included studies

The database search process identified a total of 184 articles. After
removing duplicates (n = 130), 54 articles remained for eligibility
assessment. Subsequently, the reference lists and citations of the
eligible studies were reviewed to identify additional relevant studies,
resulting in the identification of 5 further articles. Two authors (S.C.
and S.U.) reviewed the article titles and abstracts according to the
criteria presented in Table 1. Of the initial 54 articles, 18 were ex-
cluded as irrelevant to the study scope following the screening of
their abstracts. The full texts of the remaining 36 articles were then
assessed, and 24 articles were excluded for various reasons (e.g.,
the research design did not include validity or reliability results, or
the studies did not involve human participants). Consequently,
12 studies met the inclusion criteria for the systematic review, and
11 were incorporated into the meta-analytic synthesis assessing the
criterion validity of OpenCap. Additionally, two studies were system-
atically assessed for reliability outcomes. Of these systematically
evaluated studies, one was Lima et al. [2], which was included in
the meta-analytic synthesis for criterion validity, but its reliability
outcomes were interpreted systematically. The other study was Hor-
sak et al., which was solely interpreted systematically [56]. Details
of all these studies are provided in Supplementary Material (link).

An overview of the screening process, illustrated using a PRISMA
flow diagram, is presented in Figure 1.
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TABLE 3. Heterogeneity and Egger’s regression test results for publication bias.

Heterogeneity

Publication Bias

%2

%I? %I?

Model Q df (evel 1)  (level 2) (level 3) 10 FF Esger P
A Three-level 2968.74 639 < 0.001  14.89 0.93 84.18 8511  -0.009  0.363
B Three-level 1691.11 229 <0001 13.68 2128 6504 8632 0229 0819
C Three-level 25360.51 1086 < 0.001  0.16 54.01 4583  99.84  2.841 0.003
D Three-level 139878 233 <0001 1368 2128 6504 8632  -0967  0.333
E Threelevel 1568.58 345 <0001  17.95 5.71 82.05 8776  -1.842  0.065

Considering the 12 included studies, a total of 203 individuals
were enrolled in this review (age range: 18 to 35 years; 108 males
and 89 females; gender was not specified in the study by Peng
et al.) [57]. The most commonly used criterion devices were the
three-dimensional motion capture system [11, 27, 58, 59] and the
force plate [26]. In four studies, both the three-dimensional motion
capture system and the force plate were employed concurrent-
ly [2, 16, 23, 25, 57]. Only one study used an optoelectrical sys-
tem [60]. Furthermore, the studies incorporated a variety of tasks,
categorized into jump-based tasks (e.g., CMJ, SJ, DJ, bilateral (BDJ)
and unilateral DJ (UDJ), forward hop, lateral hop, triple vertical hop,
side step, side hop) [2, 26, 271 and motion-based tasks (e.g., gait,
cycling, walking, running, timed up and go, sit-to-
stand) [11, 16, 23, 56-58]. Some studies combined both jump-
based and motion-based tasks [25, 59, 60]. Regarding the number
of cameras used for the three-dimensional motion capture system,
this study reports a range of 8 to 17 cameras. The frequencies of
these systems vary between 100 and 250 Hz. The frequencies of
force plates vary between 1000 and 2000 Hz (Tables 4 and 5).

Methodological quality and risk of bias

No articles were rated as “poor quality”. Of the total 12 articles,
2 were classified as “fair quality”, 9 as “good quality”, and 1 as
“excellent quality” (Table 2). The inter-rater agreement between the
two assessors was found to be in excellent agreement, based on
Cohen’s kappa coefficient (k = 0.770; 95% Cl: 0.654-0.891).
However, only three studies (27.3%) provided justification for their
sample sizes. Additionally, the risk of bias assessment conducted for
the included studies indicated that 9 studies had a moderate risk of
bias [2, 16, 23, 25-27, 56, 57, 59], while 3 studies had a serious
risk of bias [11, 58, 601].

Publication bias

Egger’s regression test indicated no evidence of publication bias for
the pooled ES (Figure 3), as well as for the jump-based (Figure 6)
and motion-based task (Figure 7) subgroups and Fisher’s Z estimates

(Figure 4) (all p > 0.05). However, for pooled RMSE (Figure 5),
Egger’s regression test revealed statistically significant publication
bias (p = 0.003) (Table 3).

Synthesis of results

Criterion validity

As a result of the three-level meta-analysis, the pooled ES between
OpenCap and criterion devices (Figure 3) was found to be statisti-
cally non-significant and slightly negative (ES = -0.140; 95% Cl =
-0.252 t0 -0.028; p = 0.021). The Cochran’s Q statistic revealed
a statistically significant level of heterogeneity among the studies
(Qg30 = 2968.74; p < 0.001). This heterogeneity was interpreted
as “high”, with an 12 value of 85.11%. The variance levels contribut-
ing to the heterogeneity for OpenCap were as follows: 14.89% for
level 1, 0.93% for level 2, and 84.18% for level 3 (A; Table 3). The
sensitivity analysis showed that after excluding the study of Martis
et al. [11], the ES remained unchanged (ES = -0.140); however, it
lost its statistical significance (p = 0.063) [I2 = 85.06% (14.95%;
2.59%; 82.47%)]. The sensitivity analysis showed that the results
were stable. Additionally, the risk of publication bias was assessed
by examining the symmetry of the funnel plot, and the findings were
confirmed by the extended Egger’s test, as presented in Table 3 (p =
0.363).

When examining the Fisher’s Z values (Figure 4), the pooled ef-
fect was found to be significant and showed a good to excellent pos-
itive correlation (r = 0.845; 95% Cl = 0.559-0.951; p = 0.005).
Statistically significant heterogeneity was detected among the stud-
ies (Qup9 = 1691.11; p < 0.001). This heterogeneity was interpret-
ed as “high”, with an 12 value of 86.32%. The variance levels con-
tributing to the heterogeneity for OpenCap were as follows: 13.68%
for level 1, 21.28% for level 2, and 65.04% for level 3 (B; Table 3).
Additionally, the risk of publication bias was assessed by examining
the symmetry of the funnel plot, and the findings were confirmed by
the extended Egger’s test, as presented in Table 3 (p = 0.819).

The pooled RMSE value (Figure 5) between OpenCap and the cri-
terion devices was found to be 5.877° (95% Cl = 3.985-7.770%;
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TABLE 4. Characteristics of the included studies.
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Au'(Yh;rr(S)’ c::rr:ztl:r?;?cs Study Design Criterion Device(s)
15 recreational athletes The study involved three types of jumps: CMJ A ground-embedded force platform (Kistler

- M=29;F=06) on a force platform, SJ with a 3-second hold 9287CA, 0.6 x 0.9 m, Kistler, Switzerland)
g = age = 22.4 + 3.6 years before jumping, and DJ from a 41 cm box. DJs  sampling at 1000 Hz using Vicon Nexus
E E height = 1.75+0.07 m were performed bilaterally and unilaterally on software (version 2.15, Oxford, United
S ] body mass = 77.9 + 12.6 kg both dominant and non-dominant limbs. All Kingdom).
= sport participation = 8.9 = 4.2 h/week jumps were tested under two conditions: with

experience in sport = 10.1 = 4.4 years arm swings or hands fixed on the hips.

R 12 participants All participants performed eight trials of Three-dimensional motion capture 10-camera
E: 5 M=6;F=06) a double-leg jump-landing rebound task, system (v2.14, Vicon, Nexus, Oxford, UK)
5 age = 18.2 = 3.3 years single-leg forward hop, and single-leg sampling at 250 Hz.

g I height = 179.6 = 13.2 cm |ateral-vertical hop.
body mass = 75.9 = 17.6 kg
12 participants During the gait experiment, they were Three-dimensional motion capture system that
- age = 21.7 = 1.2 years instructed to walk and run on a designated consisted of 11 cameras (Vicon, Oxford
; ) height = 168.5 +7.3 cm pathway at a self-selected comfortable speed. ~ Metrics Ltd., Oxford, England) and two force
g % body mass = 57.8 +7.9 kg The walking and running speeds were plates (OR6, AMTI, Watertown, United States)
e quantified as 0.91 +0.12 m/s and at sampling frequencies of 200 Hz and
1.59 = 0.2 m/s, respectively. 1000 Hz, respectively.
19 participants Participants attended two 50-minute sessions  Three-dimensional motion capture 11-camera
M=10;F=9 at a biomechanics lab, about 7 days apart. system (Vicon, Oxford, UK) sampling at
age = 27.7 = 4.1 years Validity was assessed by collecting data with 200 Hz. Ground reaction forces were collected
N height = 173.6 £9.9 cm OpenCap and a marker-based system (Vicon) using three ground-embedded force plates
; E body mass = 68.5+ 11.9 kg simultaneously in the first session, and (Advanced Mechanical Technology, MA, USA)
E § test-retest reliability was evaluated across sampling at 1000 Hz.
- separate days. Each participant performed five
tasks in a pre-defined order: single-leg squat,
sidestep cut, side hop, single-leg triple vertical
hop and double-leg countermovement jump.
10 healthy adults OpenCap using two iPhones against 8-camera motion capture system (Motion
M=4F=06) marker-based motion capture and force plate Analysis Corp., Santa Rosa, CA, USA)
= = age = 27.7 = 3.8 years analysis in a cohort of ten healthy individuals ~ sampling at 100 Hz and 3 force plates (Bertec
L) height = 1.74 +0.12 m for several activities (walking with/without Corp., Columbus, OH, USA) sampling at
E § body mass = 69.2 = 11.6 kg trunk sway, squats with/without asymmetric 2000 Hz for GRF.
s force, sit-to-stands with/without increased
trunk flexion, and drop jumps with/without
asymmetric landing force).
10 healthy adults Study evaluates the performance of 10-camera motion capture system (Vicon
M=5F=05 marker-based and markerless (OpenCap) Motion Systems Ltd., Oxford, UK) operating at
age = 29.5 + 3.3 years motion capture systems in assessing joint a sampling rate of 250 Hz.

R height = 1.76 = 0.08 m kinematics and kinetics during cycling. Pedal
E _ body mass = 70.6 == 11.8 kg reaction forces and crank positions were
2 B measured at 250 Hz using Sensix pedals and
§ ":; an encoder. Participants cycled for 20 seconds
E at two cadences (90 = 5.0 rpm and

60 = 5.0 rpm) and three resistance levels
(low, normal, high), generating cycling powers
between 55 and 352 W at their preferred
saddle height.
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TABLE 4. Continue.

Autvlgrr(s), C:::gz::rg:?cs Study Design Criterion Device(s)
¢ 10 participants Walking movements toward and away from the  Three-dimensional motion capture 17-camera
e M=6;F=14) cameras were recorded using marker-based system (Vicon, Oxford, UK) sampling at
e age = 29.7 + 8.6 years and markerless systems, with 5—7 recordings 150 Hz.

R e height = 176.6 = 11.5 cm per participant in each direction. Kinematics
E = e hody mass = 74 + 13 kg were analyzed a musculoskeletal model for the
o < * BMI = 235+ 2 kg/m? pelvis, hip, knee, and ankle joints. Stance and
€ 3 . s
S & swing phases, foot progression, lift-off, and

landing angles were calculated for each stride.
Stride length, walking speed, step length, and
step width were measured using heel marker
positions and walking direction.
= e 40 participants Activities included running 15 m, performing Optoelectronic system (Qualisys, Arqus 9) at
) e (M= 20; F = 20) a 45° cutting maneuver, a CMJ, a 30 cm D), 200 Hz.
g E * age = between 18 to 25 and a single hop test.
% < e sport participation = at least two hours per
«» week
e 18 healthy participants (three participant Participants walked barefoot with minimal Three-dimensional motion capture 16-camera
were excluded) clothing at a self-selected speed on system (Nexus, 2.14, Vicon, Oxford, UK)

R e M=9F=12 a 10 m walkway, performing four gait patterns ~ sampling at 120 Hz and three synchronized
: g e age = 30.2 + 8.5 years (physiological, crouch, circumduction, and force plates (AMTI, Watertown, MA, USA)
= e height = 173.0+=9.5cm equinus) in random order. For each participant  recorded GRF
é < * body mass = 69.6 + 13.1 kg and walking condition, five left and five right at 1200 Hz.

o BMI = 23.2 + 3.4 kg/m? force plate hits were recorded with both, the
marker-based and the markerless systems
simultaneously.
* 18 healthy participants (three participant Participants were instructed by one 16-camera motion capture system (Nexus,

. were excluded) experienced physiotherapist to walk in 2.14, Vicon, Oxford, UK) was used to record
g g e M=9F=12 a random order with four different gait the trajectories of 57 skinmounted markers at
E g * age = 30.2 = 8.5 years patterns (physiological, crouch, circumduction, 120 Hz.
=s= S e height = 173.0=9.5cm and equinus gait) while simultaneously

* body mass = 69.6 = 13.1 kg undergoing marker-based and markerless 3D
o BMI = 23.2 + 3.4 kg/m? gait analysis.
* 19 healthy participants Participants completed two sessions, a test Not reported.
e M=12F=1) and a retest, 26 days apart (SD 3). In the first
== e age = 35+ 11 years session, they performed a sit-to-stand task
E “;’ o BMI = 24.1 + 3.6 kg/m’ and walked at a comfortable speed, once in
2 S street wear and once in minimal clothing, both
=« barefoot. Clothing order was counterbalanced.
In the retest session, tasks were performed in
minimal clothing only.

. * 20 ice hockey players. Participants were verbally instructed how to 10-camera motion capture (Vicon, Oxford
g = e F=18M=2) complete the gait (walking and running), Metrics, London, England) sampling at 240 Hz.
= E. e age = 21.35=+ 1.5 years double leg squat, countermovement jump, and
E < e height = 1.71 = 0.08 cm drop landing tasks (12-inch wooden box).

body mass = 71.08 = 7.42 kg

Note: F: Female; M: Male; SD: Standard deviation; r: Correlation coefficient; R?: Coefficient of determination; MAE: Mean absolute
error; RMSE; Root mean square error; ICC: Intraclass correlation coefficient; SEM: Standard error of measurement; MDC: Minimal
detectable change; CMJ: Countermovement jump; SJ: Squat jump; DJ: Drop jump.
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TABLE 4. Continue.

Criterion Validity Outputs Reliability Outputs
Criterion
Author(s), Year OpenCa . OpenCa RMSE
pentap Device(s) o (/RZ MAE IcC  SEM  MDC
Mean + SDMean = SD Mean SD

Three iPads (iPad Pro 11-inch, 4"
generation, 0S version 16.2, Apple, USA) v 4 v S S © S © ©
sampling at 240 Hz

Verheul et al.,
2024 [26]

Turner et al, OpenCap was sampled at 60 Hz using two

2024 [27] commercial smartphones (iPhone 12 SE, v v v v v v ) ) )
Apple Inc., Cupertino, CA, USA).
Peng et al., Two iPhone devices were used at a frame
v v
2024 [57] rate of 60 Hz. © © © © © © ©
Lima et al., Two mobile devices (iPhones XS and 11, v v o S v v v S v
2024 21 Apple, USA) were used.
Uhlrich et al., Five smartphones (iPhone 12 Pro, Apple
v v v
2023 [25] Inc., Cupertino, CA, USA). © © © © © ©

Kakavand et al, Four smartphones (iPhone 12 Pro, Apple

2025 [58] Inc., Cupertino, CA, USA) at a sampling v v v S Q S ) S S
rate of 60 Hz.
WA et saamimeneasote Y Y Y S Y & o o 0
2;2:’?202] etal, Two iPads at a sampling rate of 60 Hz. v v ) S v v S o o
;Igga[klg]t . I\gOPIr((]J)S astn;a::;(::;sg (::tzogfe 6101 :;d Y v S © 4 v S S ©
e Droaeemenn ¢ Y 0 s o & © © ©
e g T S
s e, Y 7 S S Y & 8 o ©

Note: F: Female; M: Male; SD: Standard deviation; r: Correlation coefficient; R?: Coefficient of determination; MAE: Mean absolute
error; RMSE; Root mean square error; ICC: Intraclass correlation coefficient; SEM: Standard error of measurement; MDC: Minimal
detectable change; CMJ: Countermovement jump; SJ: Squat jump; DJ: Drop jump.
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FIG. 3. Forest plot of pooled effect size.
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FIG. 6. Forest plot of pooled effect size in jump-based subgroup.
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FIG. 7. Forest plot of pooled effect size in motion-based subgroup.

p = 0.001). Statistically significant heterogeneity was detected
among the studies (Q;9g5 = 25360.51; p < 0.001). This hetero-
geneity was interpreted as “high”, with an 12 value of 99.84%. The
variance levels contributing to the heterogeneity for OpenCap were
as follows: 0.16% for level 1, 54.01% for level 2, and 45.83% for
level 3 (C; Table 3). The sensitivity analysis, conducted by exclud-
ing the study of Schwartz et al. [60], showed that the RMSE value
decreased to 5.197° (95% Cl = 3.707°-6.688°; p = 0.001) and
retained its statistical significance [I12 = 96.75% (0.25%; 43.34%;
56.41%)]. The sensitivity analysis showed that the results were sta-
ble. Additionally, the risk of publication bias was assessed by exam-
ining the symmetry of the funnel plot, and the findings were con-
firmed by the extended Egger’s test, as presented in Table 3. Egger’s
test indicated potential asymmetry (p = 0.003), while Duval and
Tweedie’s “trim and fill” procedure was applied to identify the im-
pact of missing studies and to perform necessary adjustments. This
procedure suggested that two missing studies might be added, and
in the scenario where these two missing studies are included, the
pooled RMSE would reach 4.940° (95% Cl: 2.870-7.010). This
value was still statistically significant, and 12 was 95.3%.

Subgroup synthesis of results

Criterion validity of jump-based tasks

In the analysis of the jump-based tasks subgroup (Figure 6), the
pooled ES between OpenCap and the criterion devices was found to
be statistically non-significant and slightly negative compared to the
criterion devices (ES: -0.126; 95% Cl = -0.428-0.177; p = 0.312).
A statistically significant level of heterogeneity was detected among
the studies in this subgroup (Qy33 = 1398.78; p < 0.001). This
heterogeneity was interpreted as “high”, with an 12 value of 86.32%.
The variance levels contributing to the heterogeneity for OpenCap
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were as follows: 13.68% for level 1, 21.28% for level 2, and 65.04%
for level 3 (D; Table 3). Additionally, the risk of publication bias was
assessed by examining the symmetry of the funnel plot, and the
findings were confirmed by the extended Egger’s test, as presented
in Table 3 (p = 0.333).

Criterion validity of motion-based tasks

In the analysis of the motion-based tasks subgroup (Figure 7), the
pooled ES between OpenCap and the criterion devices was found to
be statistically significant but slightly negative and trivial (ES =
-0.134; 95% Cl = -0.256 t0 -0.011; p = 0.0379). A statistically
significant level of heterogeneity was identified among the studies
analysed in this subgroup (Qs45 = 1568.58; p < 0.001). This
heterogeneity was interpreted as “high”, with an |12 value of 87.76%.
The variance levels contributing to the heterogeneity for OpenCap
were calculated as follows: 17.95% for level 1, 5.71% for level 2,
and 82.05% for level 3 (E; Table 3). In the sensitivity analysis, when
the study by Martis et al. was excluded [11], the ES changed only
slightly, to -0.133 (95% Cl = -0.273 to -0.007) and lost its statis-
tical significance (p = 0.058) [I2 = 87.55% (20.11%; 7.68%;
79.87%)]. Additionally, the risk of publication bias was assessed by
examining the symmetry of the funnel plot, and the findings were
confirmed by the extended Egger’s test, as presented in Table 3 (p =
0.065).

DISCU'S'S 1O /N 15
This systematic review and three-level meta-analysis aimed to eval-
uate the criterion validity of the OpenCap markerless motion capture
system and to systematically interpret its reliability based on the
limited evidence available in the literature. A total of 12 studies were

deemed eligible for the systematic review, with 11 (n = 184)
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providing sufficient data to be included in the meta-analytic synthe-
sis of criterion validity. The overall methodological quality of the
individual studies included in the meta-analysis was rated as “fair”,
“good”, or “excellent”.

The main findings of this review are as follows: (1) OpenCap has
potential to provide valid and acceptable kinematic data across dif-
ferent movement tasks, but heterogeneity between studies limits gen-
eralizability. (2) The pooled RMSE was 5.877°, decreasing to 5.197°
after excluding one study [60], while trim-and-fill suggested an ad-
justed value of 4.940°, which should be interpreted with caution
due to high heterogeneity. (3) The correlation with criterion devices
was good to excellent (r = 0.845). (4) The pooled ES was trivial,
and significance was lost when a single study [11] was excluded,
showing sensitivity to individual datasets. (5) Subgroup analyses in-
dicated trivial effects in both task types, with motion-based tasks
significant and jump-based tasks more consistent. (6) Reliability ev-
idence was generally good to excellent, but some tasks (e.g., trunk
rotation or knee flexion/extension in dynamic hops and cuts) showed
low reliability, indicating reduced consistency in complex or high-ve-
locity movements.

Criterion validity

The criterion validity of the OpenCap markerless motion capture
system was evaluated through two complementary approaches: (1)
agreement/accuracy with criterion devices, determined by RMSE,
and (2) correlation with criterion devices, assessed using Fisher’s
Z-transformed correlation coefficients. In addition to these, Hedges'’
g ESs were calculated.

All studies included to evaluate OpenCap’s criterion validity re-
ported RMSE values. The pooled RMSE for OpenCap, when com-
pared to criterion devices, was calculated as 5.877¢, indicating that
the system generally has an acceptable margin of error in kinemat-
ic measurements. However, this value decreased to 5.197° when
the study by Schwartz et al. was excluded [60] in the sensitivity
analysis, suggesting that the results may be sensitive to specific stud-
ies. Heterogeneity was interpreted as “high”, with an 12 value of
99.84%, and this variance was observed to largely stem from Lev-
el 2 (54.01%) and Level 3 (45.83%) contributions. This indicates
that agreement/accuracy outcomes, as a component of criterion va-
lidity, are influenced by inter-study differences (e.g., movement types,
measurement conditions, and methodological approaches) and in-
tra-study variations (e.g., different angles).

From a clinical perspective, the integration of markerless motion
capture systems into clinical applications depends on their ability to
measure human biomechanics accurately and precisely. Researchers
evaluating motion capture systems have suggested that an error of 5°
or less is considered acceptable [61, 62]. The pooled RMSE value
obtained from OpenCap is comparable to the acceptable error levels
reported in other markerless motion capture systems [14, 18, 49, 631.
Song et al. compared a commercially available system (Theia3D) with
a marker-based motion capture system and reported an RMSD value

of 6.8° for the countermovement jump (CMJ), and 9.1° across hip,
knee, and ankle angles overall [14]. Similarly, Kanko et al. evaluated
the validity of Theia3D by comparing it with a marker-based motion
capture system during walking, finding a mean RMSD value of 6.1°
across hip, knee, and ankle angles [18]. Turner et al. conducted
a study across three different movements (a jump-landing-rebound,
single-leg hop, and lateral-vertical hop), revealing that the mean RMSE
value for OpenCap across all trials ranged between 2.39° and 6.87°,
with an overall mean RMSE of 4.4° [271].

Lima et al., in a concurrent validation study involving five differ-
ent movements (CMJ, single-leg triple vertical hop, single-leg squat,
lateral step-cut, and lateral hop tasks), calculated a mean RMSE val-
ue of 6.3°+ 3.5 across all tasks and joint angles, with values rang-
ing from 1.9°(95% Cl: 1.4°-2.4°) to 15.7° (95% Cl: 13.5°-17.8°).
In this study, tasks requiring greater hip flexion, such as the CMJ
jump (8.6°), landing phase (9.5°), and squat (12.2°), exhibited low-
er validity compared to tasks with less hip flexion, such as the lat-
eral step-cut (6.1°) and lateral hop (5.7°) [2]. Furthermore, the re-
sults of this study align with findings reported by Uhlrich et al., who
identified an RMSE value of approximately 5° for the same joint an-
gles during walking and squat [25]. In a recent validation study on
gait patterns, including physiological, crouch, circumduction, and
equinus, Horsak et al. found unexpectedly high RMSE values for
knee flexion-extension angles (5.7° for physiological gait; 8.5° for
crouch gait). The study indicated an overall mean RMSE of 6.6°
across walking tasks [16]. Similarly, Peng et al. showed that Open-
Cap's RMSE values during walking and running tasks ranged from
3.05°to 7.08°[57]. The results from this review are consistent with
those reported in the literature for other markerless motion capture
systems (e.g., Theia3D, Azure Kinect) and with previous OpenCap
studies [2, 16, 25, 27]. This indicates that OpenCap generally pro-
vides a reliable range of error in kinematic measurements and dem-
onstrates a comparable level of measurement validity among mark-
erless technologies. Also, the occurrence of unexpectedly high errors
in certain tasks (such as knee flexion-extension angles) suggests that
OpenCap’s performance may vary depending on the type of move-
ment and the specific joint angle being analysed. From a clinical per-
spective, especially if the system is intended to support medical de-
cision-making (e.g., rehabilitation or injury risk assessment), it is
important to consider that these error values may exceed the com-
monly accepted threshold of five degrees. Caution should therefore
be exercised when interpreting results, as even small errors in such
contexts can lead to critical decisions that may significantly affect
individual outcomes.

On the other hand, evidence of publication bias was identified in
the criterion validity analysis based on RMSE. Conceptually, this find-
ing may point to a potential file-drawer problem; that is, studies re-
porting weaker agreement/accuracy may be underrepresented in the
literature, leading the published record to present a more optimistic
view of OpenCap’s validity than is actually the case. Duval and Tweed-
ie’s trim-and-fill method estimated the addition of two missing
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studies and reduced the pooled RMSE value to a lower estimate
(4.940°). However, it is well known that such imputation-based ad-
justments are unstable under conditions of heterogeneity (12 =
99.84%), substantial level-2/level-3 variance, and dependence
among effect sizes; therefore, the corrected estimate may have lim-
ited capacity to compensate for the true extent of publication bias.
The high 12 value indicates that the variance arises almost entirely
from true differences between studies (e.g., task types, methods
used, participant populations). In this context, when diverse move-
ment tasks, measurement conditions, and heterogeneous samples
are combined, the pooled RMSE essentially reflects an artificial av-
erage of highly divergent values and may therefore be misleading
when interpreted in isolation. Therefore, the current pooled RMSE
value is derived from a very wide range of estimates and may differ
from the true level of error. However, future studies conducted with
more homogeneous methodological designs (focusing on the same
tasks, methods, and comparable populations) could reduce hetero-
geneity and allow RMSE values obtained in subsequent meta-anal-
yses to be lower and closer to the true estimate than the present one.

In the overall correlation analysis, a statistically significant and
good to excellent positive relationship was identified between Open-
Cap and the criterion devices (r = 0.845). This finding indicates that
OpenCap provides results that are consistent and in agreement with
those of criterion devices in kinematic measurements, thereby sup-
porting its overall criterion validity. A high level of heterogeneity was
observed in the analysis (12 = 86.32%). A substantial portion of this
heterogeneity (65.04%) was attributed to methodological differenc-
es across studies (Level 3).

Verheul et al. evaluated the validity of OpenCap across various
jump tasks, including CMJ, SJ, BDJ, and UDJ. During the CMJ, the
correlation for the landing phase peak force (expressed in body
weight, BW) was reported as 0.49, with overall moderate to high
correlation values observed. However, in the UDJ task, the correla-
tion for the second landing phase peak force (BW) was 0.47, and
for the initial contact phase peak force (BW) it was 0.37. Similar-
ly, in the BDJ task, the correlation for the second landing phase peak
force (BW) was 0.45. These findings suggest that OpenCap may
have limited validity when estimating peak force values [26]. In con-
trast, Peng et al. reported high correlations between OpenCap and
criterion devices for lower limb joint angles during walking. During
running, moderate correlations were observed (e.g., 0.53 for hip in-
ternal-external rotation and 0.39 for subtalar inversion-eversion).
Additionally, high correlations were reported for lower limb joint forc-
es and ground reaction forces during both walking and running. The
researchers concluded that OpenCap provides high correlation co-
efficients and low error levels, particularly in estimating sagittal plane
lower limb joint angles and forces, suggesting that the system may
serve as a portable and cost-effective alternative in clinical set-
tings [571. Similarly, Kakavand et al. compared the performance of
OpenCap with a marker-based motion capture system for the as-
sessment of cycling biomechanics. The study was conducted with
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ten healthy adult participants and measured sagittal plane kinemat-
ics and dynamics of the hip, knee, and ankle joints using both sys-
tems. The results demonstrated very high correlations (r > 0.98)
between OpenCap and the marker-based system for joint angles of
the hip, knee, and ankle. These findings indicate that the OpenCap
is highly consistent in evaluating cycling biomechanics, offering high
validity without the need for complex marker placement procedures.
The researchers concluded that OpenCap performs comparably to
traditional marker-based systems when assessing sagittal plane
movements of the hip, knee, and ankle, highlighting its potential as
a practical and effective tool for both clinical and research applica-
tions. However, they also noted that low correlations were found for
moment calculations, particularly at the knee joint, suggesting lim-
itations in OpenCap’s capacity for accurate joint moment analysis.
Therefore, caution is advised when interpreting knee joint moment
data from OpenCap, and these potential limitations should be con-
sidered in practical use [58].

Uhlrich et al. compared the OpenCap system with marker-based
systems in terms of biomechanical measurements obtained dur-
ing tasks such as walking, squatting, sit-to-stand, and drop jump.
The system yielded promising results in predicting knee adduc-
tion moment during the early stance phase (R2 = 0.80) and in
estimating the direction of individual-level load changes. Howev-
er, the absolute error levels in knee moment estimations highlight
the need for cautious interpretation, particularly in clinical deci-
sion-making processes. The researchers emphasized OpenCap’s
potential for capturing biomechanical parameters at low cost and
within a short time frame, while also recommending careful use
of the system when analysing complex dynamic outputs such as
joint moments [25]. Martis et al. evaluated the limitations of Open-
Cap in capturing certain angular directions during gait analysis.
They compared OpenCap with an optoelectronic system across
joint angles including pelvic tilt, hip flexion, knee flexion, and an-
kle dorsiflexion under different walking strategies. The results re-
vealed that OpenCap demonstrated high correlations in the sag-
ittal plane, particularly for movements such as hip and knee flexion
(e.g., r = 0.98 for hip flexion). However, it was noted that in the
frontal plane (e.g., pelvis list), correlation values were lower and
deviations were more pronounced [11].

In light of the evidence presented, OpenCap demonstrates a high
level of agreement with criterion devices, particularly in evaluating
joint kinematics in the sagittal plane. The consistently good to excel-
lent correlations observed across studies indicate that OpenCap pro-
vides valid and acceptable measurements of hip, knee, and ankle
joint angles during tasks such as walking, running, cycling, and jump-
ing. However, lower correlations observed in certain tasks [particu-
larly in frontal plane movements (e.g., pelvis) and more complex dy-
namic variables (e.g., peak force and knee moment)] suggest that
the system may have limited agreement in these areas. Therefore,
when conducting assessments using OpenCap, it is essential to care-
fully interpret the results based on the type of task, the plane of

068 .



Measurement Properties of the OpenCap

movement, and the specific measurement target. Current findings
support the system'’s potential as a rapid, cost-effective, and porta-
ble solution for clinical and field-based applications; however, its per-
formance may vary depending on the biomechanical parameter be-
ing assessed and the context in which it is applied.

Similar to the correlation analysis, pooled ES calculations were
used to assess measurement discrepancies between OpenCap and
criterion devices. According to the included studies, the pooled ES
was statistically significant but practically trivial (ES = -0.140; p =
0.021). However, when the study by Martis$ et al. was excluded in
the sensitivity analysis [11], this significance was lost (p = 0.063),
suggesting that the results may be sensitive to specific sample groups.
Even in this case, high heterogeneity persisted (12 = 85.11%), with
the majority of this variation (84.18%) again arising from method-
ological differences across studies (Level 3). Although the measure-
ment outcomes obtained from OpenCap have been compared with
those from criterion devices, most of these studies have focused on
various jump-based movements (e.g., CMJ, SJ) and movement-based
tasks such as cycling, gait, walking toward and away from the cam-
era, running, and walking. In addition, these kinematic measures
were assessed across different anatomical regions (e.g., pelvic tilt,
pelvic list, pelvic rotation, hip flexion, hip adduction, hip rotation,
knee flexion, ankle flexion, subtalar angle, lumbar extension). Some
studies also included both left and right limbs and analysed move-
ments in the sagittal and frontal planes. This diversity primarily re-
flects the need to evaluate OpenCap’s validity across a wide range
of movements and multi-joint kinematics. Subgroup analyses pro-
vide a more detailed understanding of OpenCap’s performance across
different movement tasks. In the jump-based tasks subgroup, the
pooled ES between OpenCap and criterion devices was practically
trivial and not statistically significant. In the motion-based tasks sub-
group, the ES was statistically significant but practically trivial. When
the study by Marti$ et al. was excluded [11], this significance was
lost (p = 0.058), once again indicating that the results may be sen-
sitive to the sample included. The fact that both the overall and sub-
group effect sizes were practically trivial suggests that OpenCap does
not introduce meaningful measurement bias and can be considered
a valid system for capturing kinematic data.

Reliability
One of the principal advantages of markerless motion capture systems
is their capacity to reliably collect data in environments with high
ecological validity, while simultaneously reducing the requirement for
trained specialists. These features provide significant practical ben-
efits, particularly in the context of time-constrained and large-scale
field studies, by eliminating the processes of marker placement and
removal [56].

Lima et al. investigated the reliability of the OpenCap system for
various joint angles during initial contact and peak angles in triple
hop, squat, side hop, cut, and countermovement jump tasks. They
reported that OpenCap achieved good to excellent test-retest

reliability (ICC = 0.77-0.95) for 69% of variables across joints and
tasks, which is 18% lower compared to marker-based systems. Com-
paring average ICC values, marker-based systems recorded 0.82 for
peak angles and 0.75 for initial contact angles, while OpenCap re-
corded 0.72 for peak angles and 0.64 for initial contact angles. When
evaluated by specific tasks, seven out of eight peak angles in the side
hop and squat tests showed moderate to excellent reliability, but
trunk rotation had the lowest reliability in both tasks (ICC = 0.16;
ICC = 0.60). On the other hand, low reliability was reported for knee
peak flexion/extension angles in the side-step cut (ICC = 0.25) and
triple hop (ICC = 0.37) tasks. The side hop test was the only task
showing moderate to excellent reliability for all joint angles at initial
contact. Accordingly, the findings indicate that OpenCap offers a lev-
el of reliability comparable to marker-based systems [2]. In line with
this, Wilken et al. also reported reliability for marker-based systems
during level-ground walking in healthy individuals, with ICC values
ranging from 0.74 to 0.96 [62]. Additionally, OpenCap was found
to achieve higher reliability compared to the Microsoft Kinect-based
markerless motion capture system reported by Tamura et al. for hip
(ICC = 0.72) and knee (ICC = 0.71) angles [64].

Horsak et al. examined the test-retest reliability of OpenCap dur-
ing walking and sit-to-stand tasks under minimal and street cloth-
ing conditions, finding moderate to excellent inter-session agree-
ment, with ICC values ranging from 0.70 for the femur to 0.97 for
the tibia in segment length analysis for the static calibration mod-
el. Additionally, they reported that OpenCap’s repeatability under
similar clothing conditions was acceptable to good [56]. Keller et al.
also found that clothing had no clinically significant effect on kine-
matic outputs in measurements using the Theia system [65]. Fur-
thermore, Horsak et al. noted that kinematic data collected with
OpenCap during walking and sit-to-stand tasks were minimally af-
fected by clothing changes, with differences for most variables re-
maining below 1° [56].

The minimal detectable change (MDC) is an important metric as
it represents the smallest change in a measurement that is unlikely
to result from random variability [66]. Horsak et al. reported that
OpenCap’s MDC values during walking were, on average, 2.5° high-
er [66] compared to those reported by Wilken et al. for marker-based
gait analysis, with the largest differences observed in sagittal trunk,
pelvis, and hip parameters [62]. The study found MDC values rang-
ing from 2° to 16°, with the highest values in sagittal trunk, pelvis,
and hip parameters. Average SEM and MDC values were 2.2° and
6.0° for walking, and 2.4° and 6.5° for the sit-to-stand task, respec-
tively [56]. Similarly, Kanko et al. reported that the Theia system
showed an average variability of 2.5° across all joint kinematic vari-
ables during treadmill walking, with the markerless approach dem-
onstrating less variability across multiple sessions compared to mark-
er-based systems [18]. Supporting these findings, Lima et al.
examined OpenCap’s MDC values across various tasks and found an
average of 11° (range: 3°-36.1°) for peak and initial contact angles.
For the triple hop task, an MDC of 23.6° (SEM: 8.5°) was reported
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for knee peak flexion/extension angle, and for the squat task, an MDC
of 9.2° (SEM: 3.3°) was reported for hip peak internal rotation. In
comparison, the marker-based system had an average MDC of 9.5°
(range: 3.3°-19.3°), approximately 1.5° lower than OpenCap, though
OpenCap exhibited a wider MDC distribution across joints and
tasks [2] .

Current findings show that OpenCap provides reliability values
largely comparable to marker-based systems. However, high variabil-
ity observed in certain tasks and joint angles (e.g., trunk rotation,
and knee peak flexion/extension in side-step cut and triple hop tasks)
limits the system’s sensitivity to detect small kinematic changes over
time, making it challenging to capture subtle movement differences,
particularly in clinical populations or during early rehabilitation stag-
es. Although OpenCap produces results similar to marker-based sys-
tems for some tasks and joints, its wider MDC distribution in dynam-
ic tasks (especially triple hop and squat) reinforces this limitation.
Therefore, the system appears more suitable and practical as an al-
ternative for field-based research rather than small-scale clinical
applications.

Limitations

Despite the comprehensive approach taken in this systematic review
and three-level meta-analysis, several limitations must be acknowl-
edged. First, the relatively small number of included studies (n =12)
may limit the generalizability of the findings. While the sample size
is sufficient for a meta-analytic synthesis, the restricted pool of stud-
ies and participants (predominantly young, healthy individuals aged
18-35 years) may not fully represent the broader population, includ-
ing older adults, clinical populations, or individuals with movement
impairments, who are often the target of motion capture applications
in rehabilitation and clinical settings. This demographic homogene-
ity could influence the applicability of OpenCap’s criterion validity in
more diverse contexts. Second, the sensitivity analyses revealed that
the exclusion of specific studies (e.g., [11] and [60]) altered the
statistical significance or magnitude of the results. This sensitivity to
individual studies underscores the influence of outliers or method-
ological outliers and highlights the need for more standardized pro-
tocols in future research to reduce variability and enhance the stabil-
ity of findings. Finally, none of the included studies investigated
OpenCap’s performance in populations with altered biomechanics,
such as individuals with musculoskeletal disorders, neurological im-
pairments, or post-surgical rehabilitation conditions. Future research
should address different age groups, clinical populations, and per-
formance levels to comprehensively evaluate the validity and reli-
ability of the OpenCap system across diverse real-world and clinical
contexts. These limitations collectively suggest that while OpenCap
demonstrates promising validity as a markerless motion capture sys-
tem, the current evidence base is not yet comprehensive or uniform
enough to support unequivocal recommendations for its widespread
adoption across all clinical and sports applications.
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CONCLU SO N S 5
This systematic review and three-level meta-analysis included a total
of 12 studies (n = 203), 11 of which (n = 184) were incorporated
into the meta-analytic synthesis of criterion validity. The results in-
dicate that OpenCap, a smartphone-based markerless motion capture
system, can provide valid and acceptable kinematic measurements
compared to criterion devices. In terms of reliability, based on the
limited number of available studies, test-retest consistency gener-
ally ranged from moderate to very good across many joint angles and
tasks, although marked variability was observed in certain task-joint
combinations. MDC indicators further support these results; the
wider MDC distributions observed in dynamic tasks (particularly the
triple hop and squat) suggest that OpenCap may have limited sen-
sitivity in detecting small clinical changes.

The pooled RMSE exceeding the frequently cited clinical thresh-
old of 5°(5.877°) indicates potential limitations in sensitivity for cer-
tain tasks and joint angles. Publication bias was detected only in the
RMSE synthesis, and although the trim-and-fill method predicted
two “missing” studies and produced a lower estimate (4.940°), it
should be noted that such imputations are unstable under conditions
of extreme heterogeneity and dependence among ESs. Therefore, the
pooled RMSE is derived from a very wide range of values and may
not fully reflect the true level of error. On the other hand, the high 12
value indicates that the pooled RMSE, obtained by combining dif-
ferent task types, measurement conditions, and heterogeneous sam-
ples, essentially reflects an artificial average of highly divergent val-
ues. This suggests that OpenCap’s performance may not be fully
represented and could vary substantially depending on the specific
task, joint angle, and methodological conditions analysed.

The sensitivity of the findings to individual studies and the pre-
dominance of young/healthy samples limit the generalizability of the
results to clinical and older/atypical populations. For future research,
preregistered protocols, comprehensive and transparent reporting
(including null/negative findings), the reporting of prediction inter-
vals, and validation in clinical/older populations should be prioritized.
In addition, although the pooled ES remained trivial in magnitude,
statistical significance was lost when a single study was removed,
indicating that the overall validity effect is fragile.

In conclusion, OpenCap can produce valid and acceptable kine-
matic measurements under field conditions and offers considerable
potential as a cost-effective motion analysis solution. However, the
current evidence base suggests that the pooled RMSE value, derived
from a very wide range of estimates across different joints and tasks,
may not fully reflect the true level of error. Therefore, further research
with methodological standardization and clinically more representa-
tive samples is essential to ensure that the system can provide con-
sistent, precise, and clinically meaningful outcomes. Future studies
should be conducted with samples that include older adults, clini-
cal cohorts (e.g., post—anterior cruciate ligament reconstruction, neu-
rological populations), different BMI levels, and a balanced repre-
sentation of women and men. Given the limited evidence on reliability,
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comparative designs assessing inter-/intra-session, inter-rater, and
inter-device consistency may be planned; moreover, SEM and MDC
values should be reported by joint/task and interpreted in relation to
the minimal clinically important difference (MCID) or smallest worth-
while change (SWC). It is also important to evaluate performance
under field conditions (clothing, surface, lighting) and to systemati-
cally test validity in diverse dynamic movements involving rapid chang-
es of direction, landing, plyometric actions, and deep flexion. These
steps will strengthen OpenCap’s capacity to produce clinically mean-
ingful and generalizable outcomes.
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