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Measurement Properties of the OpenCap

INTRODUCTION

Motion capture systems are widely used in clinical and sports contexts 

for various purposes, such as analysing movement techniques, im-

proving skill training (e.g., through real-time feedback for movement 

retraining), and monitoring rehabilitation or training processes [1, 2]. 
Additionally, motion analysis is often a key component of screening 
tests to identify athletes at risk of lower extremity injuries, enabling 

the development of personalized training programmes [3–7]. Three-
dimensional (3D) marker-based motion capture systems are consid-

ered the gold standard in sports science for kinematic measurements 

of the whole body and joint levels. However, their effectiveness is 

inĠuenced by extensive setup requirements, such as marker place-

ment on participants, the need for specialized clothing, camera 

calibration, and the expertise training required to conduct data 
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collection processes [8]. In addition, high costs and the need for 
complex laboratory setups further complicate their applicability; 

limitations in portability also restrict their areas of use [2, 9–12]. 
These challenges in using marker-based systems encourage many 
clinicians working in sports medicine and biomechanics to explore 

alternative methods with high ecological validity to obtain the same 

kinematic data [13, 14]. Furthermore, the time factor is one of the 
most signiğcant limitations of marker-based systems, prompting 
researchers to seek alternative methods for athlete and patient as-

sessments [1]. In contrast, artiğcial intelligence (AI) supported mark-

erless motion capture systems stand out with their ability to estimate 

3D poses from two-dimensional (2D) red-green-blue (RGB) video 
cameras, offering the potential to overcome many limitations of 
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However, alongside these advantages, OpenCap also presents sev-

eral practical limitations that may constrain its wider adoption. The 
system currently requires relatively high/new generation quality iOS 
devices (iPhone/iPad), which may limit accessibility in some settings. 

Its reliance on cloud-based processing makes stable and high-speed 
internet a prerequisite, potentially reducing usability in ğeld environ-

ments with limited connectivity. Additionally, the transmission of 

movement data to cloud servers raises concerns regarding data pri-

vacy and security (encryption and Stanford compliance measures 
have been implemented), particularly in clinical applications subject 

to strict regulatory frameworks. Finally, the available data export for-
mats may restrict seamless integration with other biomechanical 

analysis software, necessitating additional conversion steps [23, 25]. 
These practical challenges highlight the importance of critically eval-
uating OpenCap not only in terms of its potential beneğts but also 
its current limitations when considering broader implementation. The 
reliable use of this technology in practical applications is directly re-

lated to the validity and reliability of its kinematic measurement out-

puts. Although recent literature includes studies investigating the va-

lidity of the OpenCap system across different types of movements 

and usage scenarios, the ğndings are not yet sufğciently clear or gen-

eralizable due to methodological diversity and limited sample sizes. 

This increases uncertainty for health professionals, sports scientists, 
and researchers when evaluating the suitability of the system. Valid 

and reliable movement analysis has a critical importance in clinical 
decision-making processes. It ensures the individualized and precise 
planning of rehabilitation protocols and the informed making of re-

turn-to-sport decisions, thereby optimizing sports performance out-

comes and increasing the effectiveness of rehabilitation interven-

tions [27–30]. Therefore, a study that examines the criterion validity 
levels of kinematic measurements obtained with the OpenCap sys-

tem and systematically summarizes the available evidence on its re-

liability would ğll an important gap in the ğeld. In this context, the 
aim of this research is to evaluate the criterion validity of the Open-

Cap markerless motion capture system and to present its reliability 

characteristics systematically.

MATERIALS AND METHODS 

The protocol was registered on the Open Science Framework (OSF) 
platform, and all ğles regarding the study process were shared (https://
osf.io/qwmsp; Registration DOİ: https://doi.org/10.17605/OSF.IO/
KDT38). This systematic review was performed in accordance with 
the guidelines outlined in the Preferred Reporting Items for System-

atic Reviews and Meta-Analyses (PRISMA).

Literature search strategy

In this study, four electronic databases (Web of Science, PubMed, 
Scopus, and EBSCO) were used for the literature search. Google 
Scholar was also used in the follow-up search to identify additional 
studies that were not contained in the above databases. The literature 
search was initiated on November 24, 2024, and concluded on 

traditional laboratory-based assessments [15]. These 2D pose esti-
mation algorithms can detect anatomical landmarks or joint centre 

positions in a single video and derive an individual’s posture in each 
video frame or image [16]. Over the past decade, various 2D pose 
estimation algorithms, such as OpenPose, Theia3D, DeepLabCut, 
DeepPose, and DeeperCut, have been published [17–21]. The abil-
ity to quickly collect data from numerous individuals makes marker-

less motion capture systems a promising alternative for large-scale 
real-world applications. The increasing widespread use and develop-

ment of these systems demonstrate that a detailed understanding of 
their measurement properties is of critical importance for effective 

use. These properties, such as the capacity of systems to obtain 
measurement results that are close to true values and to acceptably 

and validly assess the structures they aim to measure (agreement/

accuracy), as well as their ability to generate consistent measure-

ments (reliability) [1, 2, 22], are of critical importance for effective 
and dependable use in clinical settings. The knowledge gained about 
the system’s measurement properties can enable clinicians to make 
informed decisions when selecting equipment for their own prac-

tices. In addition, the ability of computer vision and artiğcial intel-
ligence models to precisely track different body positions and speeds 

may vary depending on the tasks [23]. This situation stands out as 
a factor that can signiğcantly affect the validity and reliability levels 
of markerless motion capture systems [24]. The fact that the valid-

ity and reliability levels of these systems in analysing dynamic tasks 

commonly used in sports and clinical settings have not yet been 

fully clariğed creates uncertainty regarding the widespread adoption 
and effective use of this technology.

OpenCap (Stanford, USA) is an open-source, web-based, and mark-

erless motion capture system [25]. Using two iOS devices and a lap-

top, this system processes kinematic data through cloud-based soft-

ware and outputs the result. Compared to traditional marker-based 

laboratory systems, OpenCap is low-cost, easy to set up, and requires 

minimal maintenance, making it convenient for use in non-laborato-

ry environments. By eliminating the need to place markers on the 
body, it enables the analysis of natural movements in sport-speciğc 
settings, making the system a promising tool for both clinical and 
sports applications [26]. In a pioneering study in this ğeld, Uhlrich 
et al. introduced the OpenCap system and took the ğrst steps of val-
idation by comparing kinematic data obtained using two iPhones with 

the marker-based system, which is the reference standard in the in-

dustry. When the two systems were compared during various activi-
ties such as walking, squatting, standing up from a chair, and drop 
jumps (DJs) in ten healthy individuals, the RMSE range across low-

er-extremity joint angles was found to be 2.0–10.2° [25].
The accessibility offered by OpenCap through its low-cost, porta-

ble, and markerless structure holds signiğcant potential in various 
ğelds such as clinical applications, sports science, and academic re-

search. This system is noteworthy for enabling movement analysis 
in natural environments by largely eliminating the time, cost, and 

setup challenges of traditional marker-based systems [27–30]. 
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March 7, 2025. The search term used was “OpenCap” AND (“Valid-

ity” OR “Reliability” OR “Accuracy” OR “Agreement”). Additionally, 
the reference lists of the included studies were examined for other 

relevant studies. Two independent authors (S.Ç. and S.U.) screened 
the titles and abstracts, and articles with the potential for inclusion 

in the study were read in full for further evaluation.

Inclusion and exclusion criteria

The study selection was conducted based on the Participants, Inter-
vention, Comparators, Outcomes, and Study Design (PICOS) ap-

proach [31]. Articles published in different languages did not meet 
the eligibility criteria; only articles written in English were included 

in this study. The details of the inclusion and exclusion criteria for 
the study are provided in Table 1.

Data extraction

The extracted data included the (a) authors, (b) year of publication, 
(c) sample size, (d) sample characteristics (age, body mass, and 

height), (e) study design, (f) OpenCap and criterion devices and their 

speciğcations (sampling frequency in Hz, number of cameras, and 
speciğcations of commercial smartphones used etc.), (g) activity 
pattern [jump-based or motion-based, limbs (left or right), and vari-
ous joint angles and movement units, etc.], (h) mean and standard 
deviation for both OpenCap and the criterion device, (i) validity 

outcomes [Pearson correlation coefğcient (r/ρ), intraclass correlation 

coefğcient (ICC), means and standard deviations for RMSE, and mean 
absolute error (MAE)], and (j) reliability outcomes [r, ICC, standard 
error of measurement (SEM), and minimal detectable change (MDC)]. 
Two authors (S.Ç. and S.U.) independently extracted data from the 
selected articles using a pre-değned form created in Microsoft Excel 
(Microsoft Corporation, Redmond, WA, USA). In cases where dis-
crepancies arose regarding the extracted data, they were resolved 

through consensus in consultation with a third author (İ.İ.).

Methodological quality and risk of bias

The methodological quality of each included study was assessed 
using a modiğed Downs and Black assessment [32]. This assessment 
was based on ğve key domains: (1) reporting, (2) external validity, 
(3) internal validity-bias, (4) internal validity-confounding, and (5) 
statistical power. Items were evaluated using a binary scoring system 
of one (1) or zero (0): A score of one (1) indicated that the criteria 
were met, whereas a score of zero (0) denoted that the criteria were 
not met or could not be determined [33, 34]. In accordance with 
recommendations in the literature, speciğc threshold values were 
established for the assessment of study quality. Accordingly, studies 

scoring ≥ 50% were classiğed as “fair quality”, those scoring ≥ 70% 
as “good quality”, and those scoring ≥ 90% as “excellent quality”. 
Conversely, studies with scores below 50% were categorized as “poor 

TABLE 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Population Studies involving human participants using OpenCap 
for motion analysis across various movement tasks 

(e.g., CMJ, SJ, running, gait analysis).

Studies that do not include human participants or 
use OpenCap for purposes unrelated to motion 

analysis.

Intervention Studies assessing the validity and reliability of 
OpenCap compared to criterion devices across 

different movement tasks and various joint angles.

Studies that do not include a  direct comparison 
between OpenCap and a  recognized gold-standard 
motion capture system, or studies that only report 

OpenCap’s measurements without validation against 
a reference device.

Comparator Studies that include a  comparator group using 
criterion devices (three-dimensional motion capture 

system, force plate, and optoelectronic system).

Studies without an appropriate comparator group 
(studies without a benchmark reference system).

Outcome Studies reporting Pearson correlation (r), ICC values, 
RMSE, or the mean and standard deviation values 
of both the criterion device(s) and OpenCap in different 

movement modalities and joint angles.

Studies that do not include statistical measures related 
to the criterion validity or reliability of OpenCap.

Study Design Studies exclusively assessing validity and reliability 
of OpenCap

Randomized controlled trials (RCTs), intervention-
based studies, longitudinal studies, and cross-

sectional studies.

Additional Criteria Full-text original pre-print articles Review articles, case studies, conference abstracts, 
conference papers, and M.Sc. or Ph.D. theses.
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and three-level meta-analysis. In the case of a disagreement between 
the two authors (S.Ç. and S.U.), the third author (İ.İ.) made the ğ-

nal decision. If the third author was unable to reach a değnitive con-

clusion, the fourth author (S.Ö.) conducted the ğnal evaluation and 
determined the ultimate decision. Additionally, inter-rater agreement 

between the two assessors was calculated using Cohen’s kappa co-

efğcient, with a 95% conğdence interval (95% CI) [36]. Cohen’s 
kappa coefğcient was categorized as follows: values below 0.40 in-

dicated poor agreement, those ranging from 0.40 to 0.75 were con-

sidered fair to good agreement, and values above 0.75 represented 
excellent agreement [37]. Beyond evaluating methodological quali-
ty, the researchers also conducted a risk of bias assessment. The 
ROBINS-I assessment tool was used to evaluate the risk of bias in 
non-randomized studies. The criteria established by the researchers 
were adopted as the evaluation criteria [38].

Statistical analysis

The criterion validity of OpenCap in comparison to criterion devices 
were assessed across multiple movement modalities [e.g., counter-
movement jump (CMJ), squat jump (SJ), running, and gait analysis] 
and various joint angle regions (e.g., hip, knee, and ankle). The tra-

ditional meta-analysis approach assumes that the observed effect 

sizes (ESs) should be independent of each other [39]; however, this 
is not the case in this study. Therefore, when non-independent ESs 
are present, meaning that nested ESs exist within a study, a three-
level meta-analysis method was applied to account for this depen-

dency [40]. The three-level meta-analysis models the variance arising 
from sample sizes (Level 1), the variance of different ESs within the 

quality” [35]. A total of 14 domains were identiğed to evaluate the 
quality of reporting for studies included in this review:

1.	 Was the hypothesis or study aim clearly described?
2.	 Were the main outcomes to be measured clearly described in 

the Introduction or Methods section?
3.	 Were the participant characteristics (e.g., age, sex, anthropo-

metrics) clearly detailed?
4.	 Was the intervention procedure thoroughly described?
5.	 Were the main ğndings of the study clearly described?
6.	 Did the study provide estimates of the random variability in the 

data for the main outcomes?
7.	 Were the subjects asked to participate in the study representa-

tive of the entire population from which they were recruited?
8.	 Were the statistical tests used to assess the main outcomes 

appropriate?
9.	 Was compliance with the measurement protocol consistent and 

reliable across all participants?
10.	Were the main outcome measures used accurate (valid and 

reliable)?
11.	Were any of the results a result of p-hacking/data-dredging?
12.	Was there adequate adjustment for confounding in the analyses 

from which the main ğndings were drawn?
13.	Were losses of patients to follow-up taken into account?
14.	Did the study have sufğcient power to show reliability and/or va-

lidity? Was there a power calculation?

Two authors (S.Ç. and S.U.) independently assessed the meth-

odological quality of the studies included in this systematic review 

TABLE 2. Quality assessment scoring of 12 included studies.

Author(s), Year
Reporting

External 

Validity

Internal Validity
Power

Total % QualityBias Confounding

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Verheul et al., 2024 [26] 1 1 1 1 1 1 0 1 1 1 1 0 1 0 11/14 78.57% GQ

Turner et al., 2024 [27] 1 1 1 1 1 1 0 1 1 1 1 0 1 0 11/14 78.57% GQ

Peng et al., 2024 [57] 1 1 1 1 1 1 0 1 1 1 1 0 0 0 10/14 71.43% GQ

Lima et al., 2024 [2] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 13/14 92.86% EQ

Uhlrich et al., 2023 [25] 1 1 1 1 1 0 0 1 1 1 1 0 0 0 9/14 64.29% FQ

Kakavand et al., 2025 [58] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 10/14 71.43% GQ

Martiš et al., 2024 [11] 1 1 1 1 1 1 0 1 1 1 0 1 0 1 11/14 78.57% GQ

Schwartz et al., 2024 [60] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 8/14 57.14% FQ

Horsak et al., 2023 [16] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 12/14 85.71% GQ

Horsak et al., 2024a [23] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 12/14 85.71% GQ

Horsak et al., 2024b [56] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 12/14 85.71% GQ

Svetek et al., 2025 [59] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 12/14 85.71% GQ

Note: FQ: Fair quality; GQ: Good quality; EQ: Excellent quality.
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same study (Level 2), and the variance of ESs across studies (Level 
3) [41]. The three-level meta-analysis was conducted using a random-
effects model with restricted maximum likelihood (REML) estimation 
to minimize the Type I error rate. The criterion validity of the OpenCap 
was assessed through two complementary approaches: (1) determi-
nation of agreement/accuracy with criterion devices via RMSE and 
(2) evaluating correlation with criterion devices using Fisher’s Z-
transformed correlation coefğcients. In addition to these, Hedges’ 
g ESs were calculated. The negative or positive nature of ES values 
indicates the direction and signiğcance of measurement differences 
between OpenCap and criterion devices. Speciğcally, a negative or 
positive ES reĠects the direction of systematic bias (underestimation 
or overestimation) in OpenCap’s measurements compared to criterion 
devices, as well as the magnitude of this bias. ES was interpreted 
according to the following reference ranges: trivial (< 0.20), small 

(0.20–0.59), moderate (0.60–1.19), large (1.20–1.99), or very large 
(≥ 2.00) [42–45]. Given the need to classify reported r values, a sin-

gle study could contribute to multiple independent data pools depend-

ing on the reported statistical outcomes and measured parameters for 

validity. The weighting of individual point estimates was based on 
sample size. In this context, point estimates were variance-stabilized 
using Fisher’s Z-transformation [46].

	 	 (1)

	 	 (2)

	 	 (3)

	 	 (4)

FIG. 1. PRISMA Ġow diagram.
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Statistical results not included in the meta-analytic synthesis were 
systematically reported to support interpretation. To assess the ro-

bustness of the results, sensitivity analyses were conducted by remov-

ing one study at a time [46, 55]. Statistical analyses were conduct-
ed using the “metafor” package in R (v 4.2.1; R Core Team, https://

www.r-project.org/). Forest plot graphs were generated using Graph-

Pad Prism version 10 (GraphPad Software, San Diego, CA, USA).

RESULTS 

Characteristics of the included studies

The database search process identiğed a total of 184 articles. After 
removing duplicates (n = 130), 54 articles remained for eligibility 
assessment. Subsequently, the reference lists and citations of the 
eligible studies were reviewed to identify additional relevant studies, 

resulting in the identiğcation of 5 further articles. Two authors (S.Ç. 
and S.U.) reviewed the article titles and abstracts according to the 
criteria presented in Table 1. Of the initial 54 articles, 18 were ex-
cluded as irrelevant to the study scope following the screening of 

their abstracts. The full texts of the remaining 36 articles were then 
assessed, and 24 articles were excluded for various reasons (e.g., 
the research design did not include validity or reliability results, or 

the studies did not involve human participants). Consequently, 

12 studies met the inclusion criteria for the systematic review, and 
11 were incorporated into the meta-analytic synthesis assessing the 
criterion validity of OpenCap. Additionally, two studies were system-

atically assessed for reliability outcomes. Of these systematically 

evaluated studies, one was Lima et al. [2], which was included in 
the meta-analytic synthesis for criterion validity, but its reliability 

outcomes were interpreted systematically. The other study was Hor-
sak et al., which was solely interpreted systematically [56]. Details 
of all these studies are provided in Supplementary Material (link). 
An overview of the screening process, illustrated using a PRISMA 
Ġow diagram, is presented in Figure 1.

Here, represents the sample size, denotes the standard error, and 

indicates the summary Fisher’s Z value [47]. The data were back-
transformed into r values for reporting purposes. The r values were 
interpreted as follows: no relationship (< 0.250), weak relationship 
(0.250–0.500), moderate to good relationship (0.500–0.750), or 
good to excellent relationship (≥ 0.750) [48].

RMSE represents the magnitude of systematic and random errors 
between systems while providing a straightforward and interpreta-

ble measure of prediction accuracy [14, 16, 18, 23, 49]. In this 
context, RMSE has been analysed as one of the primary metrics for 
evaluating the measurement validity between OpenCap and the cri-

terion devices [50, 51]. RMSE values are expressed in degrees (°).
The I² percentages (i.e., the proportion of total variance distribut-

ed across each level) were used to assess the heterogeneity of the 

pooled ES. The I² statistic was interpreted based on the following ref-
erence values: low heterogeneity (< 25%), moderate heterogeneity 
(26–75%), and high heterogeneity (> 75%) [52]. The risk of publi-
cation bias was assessed by examining the symmetry of the funnel 

plot, and potential asymmetries were conğrmed using the extended 
Egger’s test [53]. Egger’s test is based on a regression analysis in 
which standardized ESs are regressed against a measure represent-
ing precision, such as the standard error of the correlation coefğcients. 
A statistically signiğcant regression coefğcient in Egger’s test indicates 
a relationship between ESs and sampling variance, which suggests 
the presence of publication bias. When evidence of publication bias 
was detected, Duval and Tweedie’s “trim and ğll” procedure was ap-

plied to determine whether adjustments to the estimates were nec-

essary due to the presence of missing studies [54].
The meta-analysis results were interpreted using the ğt metrics. 

The signiğcance level was set at p < 0.05. Subgroups were meticu-

lously established to thoroughly investigate the nuances of various 

factors inĠuencing the outcomes. These subgroups were categorized 
based on two key parameters: jumping-based and motion-based tasks. 

FIG. 2. Risk of bias in studies.

https://www.r-project.org/
https://www.r-project.org/
https://www.termedia.pl/Journal/-78/pdf-56930-20?filename=39_05051_Supplementary_Material.xlsx
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Considering the 12 included studies, a total of 203 individuals 
were enrolled in this review (age range: 18 to 35 years; 108 males 
and 89 females; gender was not speciğed in the study by Peng 
et al.) [57]. The most commonly used criterion devices were the 
three-dimensional motion capture system [11, 27, 58, 59] and the 
force plate [26]. In four studies, both the three-dimensional motion 
capture system and the force plate were employed concurrent-

ly [2, 16, 23, 25, 57]. Only one study used an optoelectrical sys-
tem [60]. Furthermore, the studies incorporated a variety of tasks, 
categorized into jump-based tasks (e.g., CMJ, SJ, DJ, bilateral (BDJ) 
and unilateral DJ (UDJ), forward hop, lateral hop, triple vertical hop, 
side step, side hop) [2, 26, 27] and motion-based tasks (e.g., gait, 
cycl ing, walking, running, t imed up and go, sit-to-

stand) [11, 16, 23, 56–58]. Some studies combined both jump-
based and motion-based tasks [25, 59, 60]. Regarding the number 
of cameras used for the three-dimensional motion capture system, 

this study reports a range of 8 to 17 cameras. The frequencies of 
these systems vary between 100 and 250 Hz. The frequencies of 
force plates vary between 1000 and 2000 Hz (Tables 4 and 5).

Methodological quality and risk of bias

No articles were rated as “poor quality”. Of the total 12 articles, 
2 were classiğed as “fair quality”, 9 as “good quality”, and 1 as 
“excellent quality” (Table 2). The inter-rater agreement between the 
two assessors was found to be in excellent agreement, based on 

Cohen’s kappa coefğcient (κ = 0.770; 95% CI: 0.654–0.891). 
However, only three studies (27.3%) provided justiğcation for their 
sample sizes. Additionally, the risk of bias assessment conducted for 

the included studies indicated that 9 studies had a moderate risk of 
bias [2, 16, 23, 25–27, 56, 57, 59], while 3 studies had a serious 
risk of bias [11, 58, 60].

Publication bias

Egger’s regression test indicated no evidence of publication bias for 
the pooled ES (Figure 3), as well as for the jump-based (Figure 6) 
and motion-based task (Figure 7) subgroups and Fisher’s Z estimates 

(Figure 4) (all p > 0.05). However, for pooled RMSE (Figure 5), 
Egger’s regression test revealed statistically signiğcant publication 
bias (p = 0.003) (Table 3).

Synthesis of results

Criterion validity

As a result of the three-level meta-analysis, the pooled ES between 
OpenCap and criterion devices (Figure 3) was found to be statisti-
cally non-signiğcant and slightly negative (ES = -0.140; 95% CI = 
-0.252 to -0.028; p = 0.021). The Cochran’s Q statistic revealed 
a statistically signiğcant level of heterogeneity among the studies 
(Q639 = 2968.74; p < 0.001). This heterogeneity was interpreted 
as “high”, with an I² value of 85.11%. The variance levels contribut-
ing to the heterogeneity for OpenCap were as follows: 14.89% for 
level 1, 0.93% for level 2, and 84.18% for level 3 (A; Table 3). The 
sensitivity analysis showed that after excluding the study of Martis 

et al. [11], the ES remained unchanged (ES = -0.140); however, it 
lost its statistical signiğcance (p = 0.063) [I² = 85.06% (14.95%; 
2.59%; 82.47%)]. The sensitivity analysis showed that the results 
were stable. Additionally, the risk of publication bias was assessed 

by examining the symmetry of the funnel plot, and the ğndings were 
conğrmed by the extended Egger’s test, as presented in Table 3 (p = 
0.363).

When examining the Fisher’s Z values (Figure 4), the pooled ef-
fect was found to be signiğcant and showed a good to excellent pos-
itive correlation (r = 0.845; 95% CI = 0.559–0.951; p = 0.005). 
Statistically signiğcant heterogeneity was detected among the stud-

ies (Q229 = 1691.11; p < 0.001). This heterogeneity was interpret-
ed as “high”, with an I² value of 86.32%. The variance levels con-

tributing to the heterogeneity for OpenCap were as follows: 13.68% 
for level 1, 21.28% for level 2, and 65.04% for level 3 (B; Table 3). 
Additionally, the risk of publication bias was assessed by examining 

the symmetry of the funnel plot, and the ğndings were conğrmed by 
the extended Egger’s test, as presented in Table 3 (p = 0.819).

The pooled RMSE value (Figure 5) between OpenCap and the cri-
terion devices was found to be 5.877° (95% CI = 3.985–7.770°; 

TABLE 3. Heterogeneity and Egger’s regression test results for publication bias.

Heterogeneity Publication Bias

Model Q df p
%I2

(level 1)

%I2

(level 2)

%I2

(level 3)
Total I2 Egger p

A Three-level 2968.74 639 < 0.001 14.89 0.93 84.18 85.11 -0.009 0.363

B Three-level 1691.11 229 < 0.001 13.68 21.28 65.04 86.32 0.229 0.819

C Three-level 25360.51 1086 < 0.001 0.16 54.01 45.83 99.84 2.841 0.003

D Three-level 1398.78 233 < 0.001 13.68 21.28 65.04 86.32 -0.967 0.333

E Three-level 1568.58 345 < 0.001 17.95 5.71 82.05 87.76 -1.842 0.065
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TABLE 4. Characteristics of the included studies.

Author(s), 

Year

Sample And

Characteristics
Study Design Criterion Device(s)

Ve
rh

eu
l e

t a
l.,

20
24

 [2
6]

•	 15 recreational athletes
•	 (M = 9; F = 6)
•	 age = 22.4 ± 3.6 years
•	 height = 1.75 ± 0.07 m
•	 body mass = 77.9 ± 12.6 kg
•	 sport participation = 8.9 ± 4.2 h/week
•	 experience in sport = 10.1 ± 4.4 years

The study involved three types of jumps: CMJ 
on a force platform, SJ with a 3-second hold 
before jumping, and DJ from a 41 cm box. DJs 
were performed bilaterally and unilaterally on 
both dominant and non-dominant limbs. All 
jumps were tested under two conditions: with 
arm swings or hands ğxed on the hips.

A ground-embedded force platform (Kistler 
9287CA, 0.6 × 0.9 m, Kistler, Switzerland) 
sampling at 1000 Hz using Vicon Nexus 
software (version 2.15, Oxford, United 
Kingdom).

Tu
rn

er
 e

t a
l.,

20
24

 [2
7]

•	 12 participants
•	 (M = 6; F = 6)
•	 age = 18.2 ± 3.3 years
•	 height = 179.6 ± 13.2 cm
•	 body mass = 75.9 ± 17.6 kg

All participants performed eight trials of 
a double-leg jump-landing rebound task, 
single-leg forward hop, and single-leg 
lateral-vertical hop.

Three-dimensional motion capture 10-camera 
system (v2.14, Vicon, Nexus, Oxford, UK) 
sampling at 250 Hz.

Pe
ng

 e
t a

l.,
20

24
 [5

7]

•	 12 participants
•	 age = 21.7 ± 1.2 years
•	 height = 168.5 ± 7.3 cm
•	 body mass = 57.8 ± 7.9 kg

During the gait experiment, they were 
instructed to walk and run on a designated 
pathway at a self-selected comfortable speed. 
The walking and running speeds were 
quantiğed as 0.91 ± 0.12 m/s and 
1.59 ± 0.2 m/s, respectively.

Three-dimensional motion capture system that 
consisted of 11 cameras (Vicon, Oxford 
Metrics Ltd., Oxford, England) and two force 
plates (OR6, AMTI, Watertown, United States) 
at sampling frequencies of 200 Hz and 
1000 Hz, respectively.

Li
m

a 
et

 a
l.,

20
24

 [2
]

•	 19 participants
•	 (M = 10; F = 9)
•	 age = 27.7 ± 4.1 years
•	 height = 173.6 ± 9.9 cm
•	 body mass = 68.5 ± 11.9 kg

Participants attended two 50-minute sessions 
at a biomechanics lab, about 7 days apart. 
Validity was assessed by collecting data with 
OpenCap and a marker-based system (Vicon) 
simultaneously in the ğrst session, and 
test-retest reliability was evaluated across 
separate days. Each participant performed ğve 
tasks in a pre-değned order: single-leg squat, 
sidestep cut, side hop, single-leg triple vertical 
hop and double-leg countermovement jump.

Three-dimensional motion capture 11-camera 
system (Vicon, Oxford, UK) sampling at 
200 Hz. Ground reaction forces were collected 
using three ground-embedded force plates 
(Advanced Mechanical Technology, MA, USA) 
sampling at 1000 Hz.

Uh
lri

ch
 e

t a
l.,

20
23

 [2
5]

•	 10 healthy adults
•	 (M = 4; F = 6)
•	 age = 27.7 ± 3.8 years
•	 height = 1.74 ± 0.12 m
•	 body mass = 69.2 ± 11.6 kg

OpenCap using two iPhones against 
marker-based motion capture and force plate 
analysis in a cohort of ten healthy individuals 
for several activities (walking with/without 
trunk sway, squats with/without asymmetric 
force, sit-to-stands with/without increased 
trunk Ġexion, and drop jumps with/without 
asymmetric landing force).

8-camera motion capture system (Motion 
Analysis Corp., Santa Rosa, CA, USA) 
sampling at 100 Hz and 3 force plates (Bertec 
Corp., Columbus, OH, USA) sampling at 
2000 Hz for GRF.

Ka
ka

va
nd

 e
t a

l.,
20

25
 [5

8]

•	 10 healthy adults
•	 (M = 5; F = 5)
•	 age = 29.5 ± 3.3 years
•	 height = 1.76 ± 0.08 m
•	 body mass = 70.6 ± 11.8 kg

Study evaluates the performance of 
marker-based and markerless (OpenCap) 
motion capture systems in assessing joint 
kinematics and kinetics during cycling. Pedal 
reaction forces and crank positions were 
measured at 250 Hz using Sensix pedals and 
an encoder. Participants cycled for 20 seconds 
at two cadences (90 ± 5.0 rpm and 
60 ± 5.0 rpm) and three resistance levels 
(low, normal, high), generating cycling powers 
between 55 and 352 W at their preferred 
saddle height.

10-camera motion capture system (Vicon 
Motion Systems Ltd., Oxford, UK) operating at 
a sampling rate of 250 Hz.
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Author(s), 

Year

Sample And

Characteristics
Study Design Criterion Device(s)

M
ar

tiš
 e

t a
l.,

20
24

 [1
1]

•	 10 participants
•	 (M = 6; F = 4)
•	 age = 29.7 ± 8.6 years
•	 height = 176.6 ± 11.5 cm
•	 body mass = 74 ± 13 kg
•	 BMI = 23.5 ± 2 kg/m2

Walking movements toward and away from the 
cameras were recorded using marker-based 
and markerless systems, with 5–7 recordings 
per participant in each direction. Kinematics 
were analyzed a musculoskeletal model for the 
pelvis, hip, knee, and ankle joints. Stance and 
swing phases, foot progression, lift-off, and 
landing angles were calculated for each stride. 
Stride length, walking speed, step length, and 
step width were measured using heel marker 
positions and walking direction.

Three-dimensional motion capture 17-camera 
system (Vicon, Oxford, UK) sampling at 
150 Hz.

Sc
hw

ar
tz

 e
t a

l.,
 

20
24

 [6
0]

•	 40 participants
•	 (M = 20; F = 20)
•	 age = between 18 to 25
•	 sport participation = at least two hours per 

week

Activities included running 15 m, performing 
a 45° cutting maneuver, a CMJ, a 30 cm DJ, 
and a single hop test.

Optoelectronic system (Qualisys, Arqus 9) at 
200 Hz.

Ho
rs

ak
 e

t a
l.,

20
23

 [1
6]

•	 18 healthy participants (three participant 
were excluded)

•	 (M = 9; F = 12)
•	 age = 30.2 ± 8.5 years
•	 height = 173.0 ± 9.5 cm
•	 body mass = 69.6 ± 13.1 kg
•	 BMI = 23.2 ± 3.4 kg/m2

Participants walked barefoot with minimal 
clothing at a self-selected speed on 
a 10 m walkway, performing four gait patterns 
(physiological, crouch, circumduction, and 
equinus) in random order. For each participant 
and walking condition, ğve left and ğve right 
force plate hits were recorded with both, the 
marker-based and the markerless systems 
simultaneously.

Three-dimensional motion capture 16-camera 
system (Nexus, 2.14, Vicon, Oxford, UK) 
sampling at 120 Hz and three synchronized 
force plates (AMTI, Watertown, MA, USA) 
recorded GRF
at 1200 Hz.

Ho
rs

ak
 e

t a
l.,

20
24

a 
[2

3]

•	 18 healthy participants (three participant 
were excluded)

•	 (M = 9; F = 12)
•	 age = 30.2 ± 8.5 years
•	 height = 173.0 ± 9.5 cm
•	 body mass = 69.6 ± 13.1 kg
•	 BMI = 23.2 ± 3.4 kg/m2

Participants were instructed by one 
experienced physiotherapist to walk in 
a random order with four different gait 
patterns (physiological, crouch, circumduction, 
and equinus gait) while simultaneously 
undergoing marker-based and markerless 3D 
gait analysis.

16-camera motion capture system (Nexus, 
2.14, Vicon, Oxford, UK) was used to record 
the trajectories of 57 skinmounted markers at 
120 Hz.

Ho
rs

ak
 e

t a
l.,

20
24

b 
[5

6]

•	 19 healthy participants
•	 (M = 12; F = 7)
•	 age = 35 ± 11 years
•	 BMI = 24.1 ± 3.6 kg/m2

Participants completed two sessions, a test 
and a retest, 26 days apart (SD 3). In the ğrst 
session, they performed a sit-to-stand task 
and walked at a comfortable speed, once in 
street wear and once in minimal clothing, both 
barefoot. Clothing order was counterbalanced. 
In the retest session, tasks were performed in 
minimal clothing only.

Not reported.

Sv
et

ek
 e

t a
l.,

20
25

 [5
9]

•	 20 ice hockey players.
•	 (F = 18; M = 2)
•	 age = 21.35 ± 1.5 years
•	 height = 1.71 ± 0.08 cm
•	 body mass = 71.08 ± 7.42 kg

Participants were verbally instructed how to 
complete the gait (walking and running), 
double leg squat, countermovement jump, and 
drop landing tasks (12-inch wooden box).

10-camera motion capture (Vicon, Oxford 
Metrics, London, England) sampling at 240 Hz.

Note: F: Female; M: Male; SD: Standard deviation; r: Correlation coefğcient; R2: Coefğcient of determination; MAE: Mean absolute 
error; RMSE; Root mean square error; ICC: Intraclass correlation coefğcient; SEM: Standard error of measurement; MDC: Minimal 
detectable change; CMJ: Countermovement jump; SJ: Squat jump; DJ: Drop jump.

TABLE 4. Continue.
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Author(s), Year OpenCap

Criterion Validity Outputs Reliability Outputs

Criterion 

Device(s)
OpenCap 

r / R2 MAE
RMSE 

ICC SEM MDC

Mean ± SDMean ± SD Mean SD

Verheul et al.,
2024 [26]

Three iPads (iPad Pro 11-inch, 4th 

generation, OS version 16.2, Apple, USA) 
sampling at 240 Hz

P P P W W W W W W

Turner et al.,
2024 [27]

OpenCap was sampled at 60 Hz using two 
commercial smartphones (iPhone 12 SE, 
Apple Inc., Cupertino, CA, USA).

P P P P P P W W W

Peng et al.,
2024 [57]

Two iPhone devices were used at a frame 
rate of 60 Hz.

W W P W P W W W W

Lima et al.,
2024 [2]

Two mobile devices (iPhones XS and 11, 
Apple, USA) were used.

P P W W P P P W P

Uhlrich et al.,
2023 [25]

Five smartphones (iPhone 12 Pro, Apple 
Inc., Cupertino, CA, USA).

W W P P P W W W W

Kakavand et al.,
2025 [58]

Four smartphones (iPhone 12 Pro, Apple 
Inc., Cupertino, CA, USA) at a sampling 
rate of 60 Hz.

P P P W W W W W W

Martiš et al.,
2024 [11]

Two iPhone cameras: an iPhone 12 and an 
iPhone 14 at a sampling rate of 60 Hz.

P P P W P W W W W

Schwartz et al.,
2024 [60]

Two iPads at a sampling rate of 60 Hz. P P W W P P W W W

Horsak et al.,
2023 [16]

Two iOS smartphones (iPhone 11 and 
12 Pro) at a sampling rate of 60 Hz.

P P W W P P W W W

Horsak et al.,
2024a [23]

Two iOS smartphones (iPhone 11 and 
12 Pro) at a sampling rate of 60 Hz.

P P W W W W W W W

Horsak et al.,
2024b [56]

Two iOS smartphones (iPhone 12 mini and 
13 Pro) at a sampling rate of 60 Hz.

W W W W W W P P P

Svetek et al.,
2025 [59]

The OpenCap system (two iOS devices 
(iPad Air, Apple, Inc) sampling at 60 Hz.

P P W W P W W W W

Note: F: Female; M: Male; SD: Standard deviation; r: Correlation coefğcient; R2: Coefğcient of determination; MAE: Mean absolute 
error; RMSE; Root mean square error; ICC: Intraclass correlation coefğcient; SEM: Standard error of measurement; MDC: Minimal 
detectable change; CMJ: Countermovement jump; SJ: Squat jump; DJ: Drop jump.

TABLE 4. Continue.

FIG. 3. Forest plot of pooled effect size.
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FIG. 4. Forest plot of pooled Fisher’s.

FIG. 5. Forest plot of pooled RMSE.

FIG. 6. Forest plot of pooled effect size in jump-based subgroup.
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were as follows: 13.68% for level 1, 21.28% for level 2, and 65.04% 
for level 3 (D; Table 3). Additionally, the risk of publication bias was 
assessed by examining the symmetry of the funnel plot, and the 

ğndings were conğrmed by the extended Egger’s test, as presented 
in Table 3 (p = 0.333).

Criterion validity of motion-based tasks

In the analysis of the motion-based tasks subgroup (Figure 7), the 
pooled ES between OpenCap and the criterion devices was found to 
be statistically signiğcant but slightly negative and trivial (ES = 
-0.134; 95% CI = -0.256 to -0.011; p = 0.0379). A statistically 
signiğcant level of heterogeneity was identiğed among the studies 
analysed in this subgroup (Q345 = 1568.58; p < 0.001). This 
heterogeneity was interpreted as “high”, with an I² value of 87.76%. 
The variance levels contributing to the heterogeneity for OpenCap 
were calculated as follows: 17.95% for level 1, 5.71% for level 2, 
and 82.05% for level 3 (E; Table 3). In the sensitivity analysis, when 
the study by Martis et al. was excluded [11], the ES changed only 
slightly, to -0.133 (95% CI = -0.273 to -0.007) and lost its statis-
tical signiğcance (p = 0.058) [I² = 87.55% (20.11%; 7.68%; 
79.87%)]. Additionally, the risk of publication bias was assessed by 
examining the symmetry of the funnel plot, and the ğndings were 
conğrmed by the extended Egger’s test, as presented in Table 3 (p = 
0.065).

DISCUSSION 

This systematic review and three-level meta-analysis aimed to eval-
uate the criterion validity of the OpenCap markerless motion capture 

system and to systematically interpret its reliability based on the 

limited evidence available in the literature. A total of 12 studies were 
deemed eligible for the systematic review, with 11 (n = 184) 

p = 0.001). Statistically signiğcant heterogeneity was detected 
among the studies (Q1086 = 25360.51; p < 0.001). This hetero-

geneity was interpreted as “high”, with an I² value of 99.84%. The 
variance levels contributing to the heterogeneity for OpenCap were 

as follows: 0.16% for level 1, 54.01% for level 2, and 45.83% for 
level 3 (C; Table 3). The sensitivity analysis, conducted by exclud-

ing the study of Schwartz et al. [60], showed that the RMSE value 
decreased to 5.197° (95% CI = 3.707°–6.688°; p = 0.001) and 
retained its statistical signiğcance [I² = 96.75% (0.25%; 43.34%; 
56.41%)]. The sensitivity analysis showed that the results were sta-

ble. Additionally, the risk of publication bias was assessed by exam-

ining the symmetry of the funnel plot, and the ğndings were con-

ğrmed by the extended Egger’s test, as presented in Table 3. Egger’s 
test indicated potential asymmetry (p = 0.003), while Duval and 
Tweedie’s “trim and ğll” procedure was applied to identify the im-

pact of missing studies and to perform necessary adjustments. This 
procedure suggested that two missing studies might be added, and 

in the scenario where these two missing studies are included, the 

pooled RMSE would reach 4.940° (95% CI: 2.870–7.010). This 
value was still statistically signiğcant, and I² was 95.3%.

Subgroup synthesis of results

Criterion validity of jump-based tasks

In the analysis of the jump-based tasks subgroup (Figure 6), the 
pooled ES between OpenCap and the criterion devices was found to 
be statistically non-signiğcant and slightly negative compared to the 
criterion devices (ES: -0.126; 95% CI = -0.428–0.177; p = 0.312). 
A statistically signiğcant level of heterogeneity was detected among 
the studies in this subgroup (Q233 = 1398.78; p < 0.001). This 
heterogeneity was interpreted as “high”, with an I² value of 86.32%. 
The variance levels contributing to the heterogeneity for OpenCap 

FIG. 7. Forest plot of pooled effect size in motion-based subgroup.
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providing sufğcient data to be included in the meta-analytic synthe-

sis of criterion validity. The overall methodological quality of the 
individual studies included in the meta-analysis was rated as “fair”, 
“good”, or “excellent”.

The main ğndings of this review are as follows: (1) OpenCap has 
potential to provide valid and acceptable kinematic data across dif-

ferent movement tasks, but heterogeneity between studies limits gen-

eralizability. (2) The pooled RMSE was 5.877°, decreasing to 5.197° 
after excluding one study [60], while trim-and-ğll suggested an ad-

justed value of 4.940°, which should be interpreted with caution 
due to high heterogeneity. (3) The correlation with criterion devices 
was good to excellent (r = 0.845). (4) The pooled ES was trivial, 
and signiğcance was lost when a single study [11] was excluded, 
showing sensitivity to individual datasets. (5) Subgroup analyses in-

dicated trivial effects in both task types, with motion-based tasks 

signiğcant and jump-based tasks more consistent. (6) Reliability ev-
idence was generally good to excellent, but some tasks (e.g., trunk 

rotation or knee Ġexion/extension in dynamic hops and cuts) showed 
low reliability, indicating reduced consistency in complex or high-ve-

locity movements.

Criterion validity

The criterion validity of the OpenCap markerless motion capture 
system was evaluated through two complementary approaches: (1) 
agreement/accuracy with criterion devices, determined by RMSE, 
and (2) correlation with criterion devices, assessed using Fisher’s 
Z-transformed correlation coefğcients. In addition to these, Hedges’ 
g ESs were calculated.

All studies included to evaluate OpenCap’s criterion validity re-

ported RMSE values. The pooled RMSE for OpenCap, when com-

pared to criterion devices, was calculated as 5.877°, indicating that 
the system generally has an acceptable margin of error in kinemat-

ic measurements. However, this value decreased to 5.197° when 
the study by Schwartz et al. was excluded [60] in the sensitivity 
analysis, suggesting that the results may be sensitive to speciğc stud-

ies. Heterogeneity was interpreted as “high”, with an I² value of 
99.84%, and this variance was observed to largely stem from Lev-
el 2 (54.01%) and Level 3 (45.83%) contributions. This indicates 
that agreement/accuracy outcomes, as a component of criterion va-

lidity, are inĠuenced by inter-study differences (e.g., movement types, 
measurement conditions, and methodological approaches) and in-

tra-study variations (e.g., different angles).

From a clinical perspective, the integration of markerless motion 
capture systems into clinical applications depends on their ability to 

measure human biomechanics accurately and precisely. Researchers 
evaluating motion capture systems have suggested that an error of 5° 
or less is considered acceptable [61, 62]. The pooled RMSE value 
obtained from OpenCap is comparable to the acceptable error levels 

reported in other markerless motion capture systems [14, 18, 49, 63]. 
Song et al. compared a commercially available system (Theia3D) with 
a marker-based motion capture system and reported an RMSD value 

of 6.8° for the countermovement jump (CMJ), and 9.1° across hip, 
knee, and ankle angles overall [14]. Similarly, Kanko et al. evaluated 
the validity of Theia3D by comparing it with a marker-based motion 
capture system during walking, ğnding a mean RMSD value of 6.1° 
across hip, knee, and ankle angles [18]. Turner et al. conducted 
a study across three different movements (a jump-landing-rebound, 
single-leg hop, and lateral-vertical hop), revealing that the mean RMSE 
value for OpenCap across all trials ranged between 2.39° and 6.87°, 
with an overall mean RMSE of 4.4° [27].

Lima et al., in a concurrent validation study involving ğve differ-
ent movements (CMJ, single-leg triple vertical hop, single-leg squat, 
lateral step-cut, and lateral hop tasks), calculated a mean RMSE val-
ue of 6.3° ± 3.5 across all tasks and joint angles, with values rang-

ing from 1.9° (95% CI: 1.4°–2.4°) to 15.7° (95% CI: 13.5°–17.8°). 
In this study, tasks requiring greater hip Ġexion, such as the CMJ 
jump (8.6°), landing phase (9.5°), and squat (12.2°), exhibited low-

er validity compared to tasks with less hip Ġexion, such as the lat-
eral step-cut (6.1°) and lateral hop (5.7°) [2]. Furthermore, the re-

sults of this study align with ğndings reported by Uhlrich et al., who 
identiğed an RMSE value of approximately 5° for the same joint an-

gles during walking and squat [25]. In a recent validation study on 
gait patterns, including physiological, crouch, circumduction, and 

equinus, Horsak et al. found unexpectedly high RMSE values for 
knee Ġexion-extension angles (5.7° for physiological gait; 8.5° for 
crouch gait). The study indicated an overall mean RMSE of 6.6° 
across walking tasks [16]. Similarly, Peng et al. showed that Open-

Cap’s RMSE values during walking and running tasks ranged from 
3.05° to 7.08° [57]. The results from this review are consistent with 
those reported in the literature for other markerless motion capture 

systems (e.g., Theia3D, Azure Kinect) and with previous OpenCap 
studies [2, 16, 25, 27]. This indicates that OpenCap generally pro-

vides a reliable range of error in kinematic measurements and dem-

onstrates a comparable level of measurement validity among mark-

erless technologies. Also, the occurrence of unexpectedly high errors 

in certain tasks (such as knee Ġexion-extension angles) suggests that 
OpenCap’s performance may vary depending on the type of move-

ment and the speciğc joint angle being analysed. From a clinical per-
spective, especially if the system is intended to support medical de-

cision-making (e.g., rehabilitation or injury risk assessment), it is 

important to consider that these error values may exceed the com-

monly accepted threshold of ğve degrees. Caution should therefore 
be exercised when interpreting results, as even small errors in such 

contexts can lead to critical decisions that may signiğcantly affect 
individual outcomes.

On the other hand, evidence of publication bias was identiğed in 
the criterion validity analysis based on RMSE. Conceptually, this ğnd-

ing may point to a potential ğle-drawer problem; that is, studies re-

porting weaker agreement/accuracy may be underrepresented in the 

literature, leading the published record to present a more optimistic 
view of OpenCap’s validity than is actually the case. Duval and Tweed-

ie’s trim-and-ğll method estimated the addition of two missing 
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studies and reduced the pooled RMSE value to a lower estimate 
(4.940°). However, it is well known that such imputation-based ad-

justments are unstable under conditions of heterogeneity (I² = 
99.84%), substantial level-2/level-3 variance, and dependence 
among effect sizes; therefore, the corrected estimate may have lim-

ited capacity to compensate for the true extent of publication bias. 

The high I² value indicates that the variance arises almost entirely 
from true differences between studies (e.g., task types, methods 

used, participant populations). In this context, when diverse move-

ment tasks, measurement conditions, and heterogeneous samples 

are combined, the pooled RMSE essentially reĠects an artiğcial av-
erage of highly divergent values and may therefore be misleading 

when interpreted in isolation. Therefore, the current pooled RMSE 
value is derived from a very wide range of estimates and may differ 
from the true level of error. However, future studies conducted with 

more homogeneous methodological designs (focusing on the same 

tasks, methods, and comparable populations) could reduce hetero-

geneity and allow RMSE values obtained in subsequent meta-anal-
yses to be lower and closer to the true estimate than the present one.

In the overall correlation analysis, a statistically signiğcant and 
good to excellent positive relationship was identiğed between Open-

Cap and the criterion devices (r = 0.845). This ğnding indicates that 
OpenCap provides results that are consistent and in agreement with 

those of criterion devices in kinematic measurements, thereby sup-

porting its overall criterion validity. A high level of heterogeneity was 
observed in the analysis (I² = 86.32%). A substantial portion of this 
heterogeneity (65.04%) was attributed to methodological differenc-

es across studies (Level 3).
Verheul et al. evaluated the validity of OpenCap across various 

jump tasks, including CMJ, SJ, BDJ, and UDJ. During the CMJ, the 
correlation for the landing phase peak force (expressed in body 

weight, BW) was reported as 0.49, with overall moderate to high 
correlation values observed. However, in the UDJ task, the correla-

tion for the second landing phase peak force (BW) was 0.47, and 
for the initial contact phase peak force (BW) it was 0.37. Similar-
ly, in the BDJ task, the correlation for the second landing phase peak 
force (BW) was 0.45. These ğndings suggest that OpenCap may 
have limited validity when estimating peak force values [26]. In con-

trast, Peng et al. reported high correlations between OpenCap and 
criterion devices for lower limb joint angles during walking. During 
running, moderate correlations were observed (e.g., 0.53 for hip in-

ternal-external rotation and 0.39 for subtalar inversion-eversion). 
Additionally, high correlations were reported for lower limb joint forc-

es and ground reaction forces during both walking and running. The 
researchers concluded that OpenCap provides high correlation co-

efğcients and low error levels, particularly in estimating sagittal plane 
lower limb joint angles and forces, suggesting that the system may 

serve as a portable and cost-effective alternative in clinical set-
tings [57]. Similarly, Kakavand et al. compared the performance of 
OpenCap with a marker-based motion capture system for the as-
sessment of cycling biomechanics. The study was conducted with 

ten healthy adult participants and measured sagittal plane kinemat-

ics and dynamics of the hip, knee, and ankle joints using both sys-

tems. The results demonstrated very high correlations (r > 0.98) 
between OpenCap and the marker-based system for joint angles of 

the hip, knee, and ankle. These ğndings indicate that the OpenCap 
is highly consistent in evaluating cycling biomechanics, offering high 

validity without the need for complex marker placement procedures. 

The researchers concluded that OpenCap performs comparably to 
traditional marker-based systems when assessing sagittal plane 

movements of the hip, knee, and ankle, highlighting its potential as 

a practical and effective tool for both clinical and research applica-

tions. However, they also noted that low correlations were found for 

moment calculations, particularly at the knee joint, suggesting lim-

itations in OpenCap’s capacity for accurate joint moment analysis. 
Therefore, caution is advised when interpreting knee joint moment 
data from OpenCap, and these potential limitations should be con-

sidered in practical use [58].
Uhlrich et al. compared the OpenCap system with marker-based 

systems in terms of biomechanical measurements obtained dur-

ing tasks such as walking, squatting, sit-to-stand, and drop jump. 

The system yielded promising results in predicting knee adduc-

tion moment during the early stance phase (R² = 0.80) and in 
estimating the direction of individual-level load changes. Howev-

er, the absolute error levels in knee moment estimations highlight 

the need for cautious interpretation, particularly in clinical deci-

sion-making processes. The researchers emphasized OpenCap’s 
potential for capturing biomechanical parameters at low cost and 

within a short time frame, while also recommending careful use 
of the system when analysing complex dynamic outputs such as 

joint moments [25]. Martiš et al. evaluated the limitations of Open-

Cap in capturing certain angular directions during gait analysis. 

They compared OpenCap with an optoelectronic system across 
joint angles including pelvic tilt, hip Ġexion, knee Ġexion, and an-

kle dorsiĠexion under different walking strategies. The results re-

vealed that OpenCap demonstrated high correlations in the sag-

ittal plane, particularly for movements such as hip and knee Ġexion 
(e.g., r = 0.98 for hip Ġexion). However, it was noted that in the 
frontal plane (e.g., pelvis list), correlation values were lower and 

deviations were more pronounced [11].
In light of the evidence presented, OpenCap demonstrates a high 

level of agreement with criterion devices, particularly in evaluating 

joint kinematics in the sagittal plane. The consistently good to excel-
lent correlations observed across studies indicate that OpenCap pro-

vides valid and acceptable measurements of hip, knee, and ankle 

joint angles during tasks such as walking, running, cycling, and jump-

ing. However, lower correlations observed in certain tasks [particu-

larly in frontal plane movements (e.g., pelvis) and more complex dy-

namic variables (e.g., peak force and knee moment)] suggest that 
the system may have limited agreement in these areas. Therefore, 
when conducting assessments using OpenCap, it is essential to care-

fully interpret the results based on the type of task, the plane of 
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reliability (ICC = 0.77–0.95) for 69% of variables across joints and 
tasks, which is 18% lower compared to marker-based systems. Com-

paring average ICC values, marker-based systems recorded 0.82 for 
peak angles and 0.75 for initial contact angles, while OpenCap re-

corded 0.72 for peak angles and 0.64 for initial contact angles. When 
evaluated by speciğc tasks, seven out of eight peak angles in the side 
hop and squat tests showed moderate to excellent reliability, but 

trunk rotation had the lowest reliability in both tasks (ICC = 0.16; 
ICC = 0.60). On the other hand, low reliability was reported for knee 
peak Ġexion/extension angles in the side-step cut (ICC = 0.25) and 
triple hop (ICC = 0.37) tasks. The side hop test was the only task 
showing moderate to excellent reliability for all joint angles at initial 

contact. Accordingly, the ğndings indicate that OpenCap offers a lev-
el of reliability comparable to marker-based systems [2]. In line with 
this, Wilken et al. also reported reliability for marker-based systems 
during level-ground walking in healthy individuals, with ICC values 
ranging from 0.74 to 0.96 [62]. Additionally, OpenCap was found 
to achieve higher reliability compared to the Microsoft Kinect-based 

markerless motion capture system reported by Tamura et al. for hip 
(ICC = 0.72) and knee (ICC = 0.71) angles [64].

Horsak et al. examined the test-retest reliability of OpenCap dur-
ing walking and sit-to-stand tasks under minimal and street cloth-

ing conditions, ğnding moderate to excellent inter-session agree-

ment, with ICC values ranging from 0.70 for the femur to 0.97 for 
the tibia in segment length analysis for the static calibration mod-

el. Additionally, they reported that OpenCap’s repeatability under 
similar clothing conditions was acceptable to good [56]. Keller et al. 
also found that clothing had no clinically signiğcant effect on kine-

matic outputs in measurements using the Theia system [65]. Fur-
thermore, Horsak et al. noted that kinematic data collected with 
OpenCap during walking and sit-to-stand tasks were minimally af-

fected by clothing changes, with differences for most variables re-

maining below 1° [56].
The minimal detectable change (MDC) is an important metric as 

it represents the smallest change in a measurement that is unlikely 
to result from random variability [66]. Horsak et al. reported that 
OpenCap’s MDC values during walking were, on average, 2.5° high-

er [56] compared to those reported by Wilken et al. for marker-based 
gait analysis, with the largest differences observed in sagittal trunk, 

pelvis, and hip parameters [62]. The study found MDC values rang-

ing from 2° to 16°, with the highest values in sagittal trunk, pelvis, 
and hip parameters. Average SEM and MDC values were 2.2° and 
6.0° for walking, and 2.4° and 6.5° for the sit-to-stand task, respec-

tively [56]. Similarly, Kanko et al. reported that the Theia system 
showed an average variability of 2.5° across all joint kinematic vari-
ables during treadmill walking, with the markerless approach dem-

onstrating less variability across multiple sessions compared to mark-

er-based systems  [18]. Supporting these findings, Lima et al. 
examined OpenCap’s MDC values across various tasks and found an 
average of 11° (range: 3°–36.1°) for peak and initial contact angles. 
For the triple hop task, an MDC of 23.6° (SEM: 8.5°) was reported 

movement, and the speciğc measurement target. Current ğndings 
support the system’s potential as a rapid, cost-effective, and porta-

ble solution for clinical and ğeld-based applications; however, its per-
formance may vary depending on the biomechanical parameter be-

ing assessed and the context in which it is applied.

Similar to the correlation analysis, pooled ES calculations were 
used to assess measurement discrepancies between OpenCap and 

criterion devices. According to the included studies, the pooled ES 
was statistically signiğcant but practically trivial (ES = -0.140; p = 
0.021). However, when the study by Martiš et al. was excluded in 
the sensitivity analysis [11], this signiğcance was lost (p = 0.063), 
suggesting that the results may be sensitive to speciğc sample groups. 
Even in this case, high heterogeneity persisted (I² = 85.11%), with 
the majority of this variation (84.18%) again arising from method-

ological differences across studies (Level 3). Although the measure-

ment outcomes obtained from OpenCap have been compared with 

those from criterion devices, most of these studies have focused on 

various jump-based movements (e.g., CMJ, SJ) and movement-based 
tasks such as cycling, gait, walking toward and away from the cam-

era, running, and walking. In addition, these kinematic measures 
were assessed across different anatomical regions (e.g., pelvic tilt, 

pelvic list, pelvic rotation, hip Ġexion, hip adduction, hip rotation, 
knee Ġexion, ankle Ġexion, subtalar angle, lumbar extension). Some 
studies also included both left and right limbs and analysed move-

ments in the sagittal and frontal planes. This diversity primarily re-

Ġects the need to evaluate OpenCap’s validity across a wide range 
of movements and multi-joint kinematics. Subgroup analyses pro-

vide a more detailed understanding of OpenCap’s performance across 
different movement tasks. In the jump-based tasks subgroup, the 
pooled ES between OpenCap and criterion devices was practically 
trivial and not statistically signiğcant. In the motion-based tasks sub-

group, the ES was statistically signiğcant but practically trivial. When 
the study by Martiš et al. was excluded [11], this signiğcance was 
lost (p = 0.058), once again indicating that the results may be sen-

sitive to the sample included. The fact that both the overall and sub-

group effect sizes were practically trivial suggests that OpenCap does 

not introduce meaningful measurement bias and can be considered 

a valid system for capturing kinematic data.

Reliability

One of the principal advantages of markerless motion capture systems 

is their capacity to reliably collect data in environments with high 

ecological validity, while simultaneously reducing the requirement for 

trained specialists. These features provide signiğcant practical ben-

eğts, particularly in the context of time-constrained and large-scale 
ğeld studies, by eliminating the processes of marker placement and 
removal [56].

Lima et al. investigated the reliability of the OpenCap system for 
various joint angles during initial contact and peak angles in triple 

hop, squat, side hop, cut, and countermovement jump tasks. They 
reported that OpenCap achieved good to excellent test-retest 
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for knee peak Ġexion/extension angle, and for the squat task, an MDC 
of 9.2° (SEM: 3.3°) was reported for hip peak internal rotation. In 
comparison, the marker-based system had an average MDC of 9.5° 
(range: 3.3°–19.3°), approximately 1.5° lower than OpenCap, though 
OpenCap exhibited a wider MDC distribution across joints and 
tasks [2] .

Current ğndings show that OpenCap provides reliability values 
largely comparable to marker-based systems. However, high variabil-

ity observed in certain tasks and joint angles (e.g., trunk rotation, 

and knee peak Ġexion/extension in side-step cut and triple hop tasks) 
limits the system’s sensitivity to detect small kinematic changes over 
time, making it challenging to capture subtle movement differences, 

particularly in clinical populations or during early rehabilitation stag-

es. Although OpenCap produces results similar to marker-based sys-

tems for some tasks and joints, its wider MDC distribution in dynam-

ic tasks (especially triple hop and squat) reinforces this limitation. 

Therefore, the system appears more suitable and practical as an al-
ternative for ğeld-based research rather than small-scale clinical 
applications.

Limitations

Despite the comprehensive approach taken in this systematic review 
and three-level meta-analysis, several limitations must be acknowl-

edged. First, the relatively small number of included studies (n =12) 
may limit the generalizability of the ğndings. While the sample size 
is sufğcient for a meta-analytic synthesis, the restricted pool of stud-

ies and participants (predominantly young, healthy individuals aged 

18–35 years) may not fully represent the broader population, includ-

ing older adults, clinical populations, or individuals with movement 

impairments, who are often the target of motion capture applications 

in rehabilitation and clinical settings. This demographic homogene-

ity could inĠuence the applicability of OpenCap’s criterion validity in 
more diverse contexts. Second, the sensitivity analyses revealed that 
the exclusion of speciğc studies (e.g., [11] and [60]) altered the 
statistical signiğcance or magnitude of the results. This sensitivity to 
individual studies underscores the inĠuence of outliers or method-

ological outliers and highlights the need for more standardized pro-

tocols in future research to reduce variability and enhance the stabil-

ity of ğndings. Finally, none of the included studies investigated 
OpenCap’s performance in populations with altered biomechanics, 
such as individuals with musculoskeletal disorders, neurological im-

pairments, or post-surgical rehabilitation conditions. Future research 
should address different age groups, clinical populations, and per-

formance levels to comprehensively evaluate the validity and reli-

ability of the OpenCap system across diverse real-world and clinical 

contexts. These limitations collectively suggest that while OpenCap 
demonstrates promising validity as a markerless motion capture sys-
tem, the current evidence base is not yet comprehensive or uniform 

enough to support unequivocal recommendations for its widespread 

adoption across all clinical and sports applications.

CONCLUSIONS 

This systematic review and three-level meta-analysis included a total 
of 12 studies (n = 203), 11 of which (n = 184) were incorporated 
into the meta-analytic synthesis of criterion validity. The results in-

dicate that OpenCap, a smartphone-based markerless motion capture 
system, can provide valid and acceptable kinematic measurements 

compared to criterion devices. In terms of reliability, based on the 
limited number of available studies, test-retest consistency gener-

ally ranged from moderate to very good across many joint angles and 

tasks, although marked variability was observed in certain task-joint 

combinations. MDC indicators further support these results; the 
wider MDC distributions observed in dynamic tasks (particularly the 
triple hop and squat) suggest that OpenCap may have limited sen-

sitivity in detecting small clinical changes.

The pooled RMSE exceeding the frequently cited clinical thresh-

old of 5° (5.877°) indicates potential limitations in sensitivity for cer-
tain tasks and joint angles. Publication bias was detected only in the 

RMSE synthesis, and although the trim-and-ğll method predicted 
two “missing” studies and produced a lower estimate (4.940°), it 
should be noted that such imputations are unstable under conditions 

of extreme heterogeneity and dependence among ESs. Therefore, the 
pooled RMSE is derived from a very wide range of values and may 
not fully reĠect the true level of error. On the other hand, the high I² 
value indicates that the pooled RMSE, obtained by combining dif-
ferent task types, measurement conditions, and heterogeneous sam-

ples, essentially reĠects an artiğcial average of highly divergent val-
ues. This suggests that OpenCap’s performance may not be fully 
represented and could vary substantially depending on the speciğc 
task, joint angle, and methodological conditions analysed.

The sensitivity of the ğndings to individual studies and the pre-

dominance of young/healthy samples limit the generalizability of the 

results to clinical and older/atypical populations. For future research, 
preregistered protocols, comprehensive and transparent reporting 

(including null/negative ğndings), the reporting of prediction inter-
vals, and validation in clinical/older populations should be prioritized. 

In addition, although the pooled ES remained trivial in magnitude, 
statistical signiğcance was lost when a single study was removed, 
indicating that the overall validity effect is fragile.

In conclusion, OpenCap can produce valid and acceptable kine-

matic measurements under ğeld conditions and offers considerable 
potential as a cost-effective motion analysis solution. However, the 
current evidence base suggests that the pooled RMSE value, derived 
from a very wide range of estimates across different joints and tasks, 
may not fully reĠect the true level of error. Therefore, further research 
with methodological standardization and clinically more representa-

tive samples is essential to ensure that the system can provide con-

sistent, precise, and clinically meaningful outcomes. Future studies 
should be conducted with samples that include older adults, clini-

cal cohorts (e.g., post–anterior cruciate ligament reconstruction, neu-

rological populations), different BMI levels, and a balanced repre-

sentation of women and men. Given the limited evidence on reliability, 



Biology of Sport, Vol. 43, 2026   571

Measurement Properties of the OpenCap

comparative designs assessing inter-/intra-session, inter-rater, and 

inter-device consistency may be planned; moreover, SEM and MDC 
values should be reported by joint/task and interpreted in relation to 

the minimal clinically important difference (MCID) or smallest worth-

while change (SWC). It is also important to evaluate performance 
under ğeld conditions (clothing, surface, lighting) and to systemati-
cally test validity in diverse dynamic movements involving rapid chang-

es of direction, landing, plyometric actions, and deep Ġexion. These 
steps will strengthen OpenCap’s capacity to produce clinically mean-

ingful and generalizable outcomes.
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